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Using firm-level earnings forecasts and managerial guidance data, we construct guidance surprises 
for analysts, i.e., differences between managerial guidance and analysts’ initial forecasts. We 
document new evidence on expectation formation: (i) analysts overreact to managerial guidance 
and the overreaction is state-dependent, i.e., it is stronger for negative guidance surprises but 
weaker for surprises that are larger in size; and (ii) forecast revisions are neither symmetric 
in guidance surprises nor monotonic. We organize these facts with a model where analysts 
are uncertain about the quality of managerial guidance. We show that a reasonable degree 
of ambiguity aversion is necessary to account for the documented heterogeneous overreaction 
pattern.

1. Introduction

The mechanisms underlying expectation formation are crucial for understanding economic decisions. While it is documented 
that individuals in general overreact to information (Bordalo et al., 2020), there has been growing interest in the circumstances 
under which the overreaction is stronger or weaker. In this paper, we provide new evidence that the degree of overreaction can 
be heterogeneous across individual forecasters, even when they receive the same information. To organize the facts, we propose a 
forecasting model where agents make forecasts based on noisy information and are uncertain about information quality.

To test how agents form expectations in general and how they react to new information in particular, it would be ideal to have 
a testing ground in which (i) the new information acquired by agents is observable and measurable, and (ii) agents’ forecasts before 
and after receiving the new information are available. We consider an environment that is fairly close to this: financial analysts 
forecast the earnings of firms, firms release managerial guidance for earnings, and then analysts update their earnings forecasts. 
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Forecast revisions are then defined to be the differences between analysts’ updated forecasts after receiving managerial guidance and 
their initial forecasts before receiving it. That is, forecast revisions are constructed to reflect the impact of the guidance on earnings.

Using earnings forecasts data (individual analysts’ EPS forecasts from the I/B/E/S Estimates) and managerial guidance data (the 
I/B/E/S Guidance data) from 1994 to 2017, we provide a number of findings. First, analysts’ forecasts overreact to information that 
arrives during the time window that is constructed to encompass managerial guidance. We show that forecast revisions are negatively 
correlated with forecast errors, which are defined to be the differences between realized earnings and analysts’ updated forecasts. 
This suggests that upward (downward) revisions can predict negative (positive) forecast errors, i.e., there is too much revision relative 
to the rational benchmark. This result is consistent with the existing findings of Bordalo et al. (2020) using macroeconomic survey 
data.

Second, our new finding in this paper is that the overreaction is heterogeneous across analysts. We define guidance surprises to 
be the differences between the managerial guidance and analysts’ initial forecasts. We construct surprises at the firm-quarter-analyst 
level, rank those surprises from the most negative to the most positive and then group them into deciles. Estimating the degree of 
overreaction in each decile subsample, we find that overreaction is stronger when surprises are negative; overreaction tends to be 
weaker when surprises are larger in size.

Third, we further directly explore how forecast revisions respond to guidance surprises with nonparametric estimations. We 
find that forecast revisions are asymmetric in surprises: forecast revisions are stronger when the surprises are negative than those 
when the surprises are of the same magnitude but positive. Furthermore, forecast revisions are not monotonically increasing in 
surprises either: when the surprises are large enough, forecast revisions decrease in surprises. Thus, the estimated relationship 
between forecast revisions and surprises displays a pattern of asymmetry and non-monotonicity. It is worth pointing out that the two 
new facts corroborate with each other.1

The new evidence on the documented heterogeneous overreaction pattern calls for a new theory, in which optimal response to 
new information has to be state-dependent. We consider a forecasting model where analysts would receive managerial guidance for 
earnings from the firm and update their forecasts in response. The key departures from standard forecasting models are (a) that 
analysts are ambiguous about the quality of the managerial guidance and (b) that they are ambiguity averse and the degree of 
ambiguity aversion is finite. The former requires that analysts should update their beliefs about the quality of guidance based on the 
guidance itself and then update their beliefs about earnings for any possible quality. The latter implies that analysts wish to act in a 
robust fashion.

In this model, the extent to which analysts overreact (or even underreact) to information while revising their forecasts depends 
critically on how analysts perceive the quality of managerial guidance. Specifically, analysts behave as if, in their posterior beliefs, 
they optimally overweigh the state of the world where their expected utility is low. When surprises are negative, analysts would 
subjectively “overcount” the quality of guidance, which leads to a more pronounced overreaction. In addition, when surprises are 
sufficiently large in size, analysts would infer that the quality of guidance is less likely to be high (the standard Bayesian mechanism), 
which leads to a more moderated overreaction (or potentially an under-reaction). Both model mechanisms are consistent with the 
pattern of heterogeneous overreaction found in the data.

It is crucial to allow agents to possess a finite degree of ambiguity aversion to simultaneously capture both nonmonotonicity 
and asymmetry in the relationship between forecast revisions and surprises. Without ambiguity aversion, analysts’ forecast revisions 
are symmetric, despite the sign of surprises. With extreme ambiguity aversion (i.e., the Wald (1949) Maxmin criterion), analysts’ 
forecast revisions are monotonic in surprises, despite the uncertainty in information quality. We construct a theory counterpart for 
the coefficients that quantify the extent of heterogenous overreaction documented in the data and illustrate the role of ambiguity 
aversion.

Furthermore, a quantitative rendition of our model demonstrates that our estimated model can produce a cross-sectional overre-

action pattern consistent with the data. To corroborate our model mechanisms, two auxiliary predictions of our model (1) pessimistic 
bias in forecast errors and (2) implications of heterogeneity in guidance quality are examined and confirmed using the data. While 
our study is the first to discover and rationalize this set of facts, there might be other mechanisms contributing to the documented 
patterns. To underscore our theoretical contributions to the literature, we compare our model with several existing theories, including 
diagnostic beliefs, overconfidence, loss aversion, and agency theory.

Both the facts documented and the mechanisms characterized in this paper are relevant for the expectation formation literature in 
general and studies concerning overreactions to information in particular. The empirical part of this paper builds on a new literature 
that empirically explores information frictions and expectation formation (Coibion and Gorodnichenko, 2015). Using macroeconomic 
survey data, Bordalo et al. (2020) and Broer and Kohlhas (2022) find that forecasters overreact to information in general.2 In an 
experimental setting, Afrouzi et al. (2022) establish that the overreaction is stronger for a less persistent data generation process and 
stronger for longer forecast horizons.

In contrast, we document the heterogeneous overreaction among analysts, taking a step beyond the existing literature. Addi-

tionally, we develop a complementary empirical approach that directly investigates the relationship between forecast revisions and 

1 If forecast revisions are linear in surprises, then the extent of overreaction to new information cannot be heterogeneous; and if overreaction is heterogeneous in 
size and direction of surprises, then forecast revisions cannot be linear in surprises. This connection will be characterized in Section 4.3.

2 Other recent studies also provide evidence on the forecasts of financial market participants, such as Bordalo et al. (2019), Bouchaud et al. (2019), Amromin and 
Sharpe (2014), Barrero (2022), Ma et al. (2020), and Greenwood and Shleifer (2014). Farmer et al. (2021) study a dynamic environment in which slow learning over 
the unit root long-run trend can rationalize a set of forecasting anomalies at the consensus level. Binder et al. (2023) and Kuang et al. (2023) use survey experiments 
2

to study the effects of economic policies on the forecasts of financial variables.
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Fig. 1. Timeline. We consider managerial guidance 𝐺𝑡 issued between 𝐴𝑡−1 and 𝐴𝑡 . If the guidance for EPS in quarter 𝑡 is released on the date of 𝐴𝑡−1 or within two 
days after 𝐴𝑡−1 , then it is bundled. If the guidance is released between 𝑄𝑡 and 𝐴𝑡 , it is a preannouncement. If more than one guidance is released between 𝐴𝑡−1 and 
𝐴𝑡 , we choose the latest one.

observable new information, which can prove to be a valuable tool for the literature. It’s worth highlighting that we establish a novel 
empirical setting for studying expectation formation, which holds significance for other related research in this field.3

Our new theory adds to the literature of expectation formation by explicitly scrutinizing how forecasters react to noisy data of 
uncertain quality. Both Epstein and Schneider (2008) and Baqaee (2020) characterize the process of expectation formation when 
agents have an extreme ambiguity averse preference (i.e., multiple priors) and show that belief updating is asymmetric in the contexts 
of asset pricing and business cycles, respectively. In contrast, our work allows for a finite degree of aversion in the smooth model of 
ambiguity following Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2022). Focusing on ambiguity about the second moments of 
the data generating process, our model offers theoretical predictions that are qualitatively different from the aforementioned works 
and that are also empirically relevant.4

In general, there is a growing interest in understanding how agents’ use of information deviates from the rational expectation 
benchmark. Prominent examples include diagnostic expectations (Bordalo et al., 2018; Bianchi et al., 2024), overconfidence (Broer 
and Kohlhas, 2022), cognitive discounting (Gabaix, 2020), level-K thinking (García-Schmidt and Woodford, 2019; Farhi and Werning, 
2019), narrow thinking (Lian, 2020), adaptive learning (Adam et al., 2012; Kuang and Mitra, 2016), autocorrelation averaging 
(Wang, 2020) and loss aversion (Elliott et al., 2008; Capistrán and Timmermann, 2009). A common feature of those models in a 
Gaussian environment is that forecast revisions are increasing in surprises and the direction of surprises does not matter. Our model 
differs in both aspects.

The rest of the paper is organized as follows. Section 2 presents the empirical findings of our paper. Section 3 sets up our model. 
Section 4 analyzes the equilibrium. Section 5 discusses a range of relevant issues concerning our theory. The paper concludes with 
Section 6. All proofs and derivations are collected in Appendix B.

2. Evidence

2.1. Data, sample, and timing

In this section, we explore how analysts revise their earnings forecasts upon newly received information. Our goal is to construct 
a scenario where the information flow is observable, measurable and accessible to the econometrician.

Towards this end, we focus on managerial guidance, which is among the very few information sources that satisfy such criteria. 
In financial markets, the management teams of publicly listed firms issue guidance for the earnings of the current quarter between 
the last quarter’s and current quarter’s earnings announcements. That is a crucial opportunity for firms to provide information about 
earnings to market participants, such as financial analysts. Because of its importance, earnings guidance often triggers analysts’ 
forecast updates: analysts likely revise their forecasts a few days after receiving earnings guidance, i.e., on average 4 days in our 
sample (constructed in this section).5 Furthermore, it is common that firms continue to provide earnings guidance for an extensive 
period of time, and the discontinuation in earnings guidance is typically perceived unfavorably by the market (Chen et al., 2011). 
Earnings guidance includes various forms, such as point estimates and range estimates.

The Thomson Reuters I/B/E/S Guidance data provides quantitative managerial expectations, such as earnings per share, from 
press releases and transcripts of corporate events. The data cover managerial guidance from more than 6,000 companies in North 
America that can date back to as early as 1994. Furthermore, the I/B/E/S Guidance data are available on the same accounting basis 
as the I/B/E/S Estimates that provide individual analysts’ forecast data. This makes it feasible to rigorously identify the timing of 
events and to compare managerial guidance and analysts’ forecasts for the same firm in a certain period. Our sample construction 
based on the I/B/E/S Guidance and Estimates data is elaborated and relegated to Appendix A.1.

We stress that we intentionally construct a time window where analysts’ initial and updated forecasts encompass the earnings 
guidance of the current quarter. This construction allows us to analyze how forecasts are updated in response to information ob-

servable to the econometrician. The construction procedure can be better apprehended with the aid of Fig. 1, which delineates the 
sequence of major events. Analyst 𝑖 learns firm 𝑗 ’s EPS for quarter 𝑡 − 1 at the date of 𝐴𝑡−1, which is EPS𝑗,𝑡−1. Then he or she issues 
a forecast 𝐹𝑖𝑗𝑡,0 for firm 𝑗 ’s EPS in quarter 𝑡. Firm 𝑗 offers guidance 𝐺𝑗𝑡 for firm 𝑗 ’s earnings in quarter 𝑡. Then, analyst 𝑖 updates his 

3 We use managerial guidance to facilitate the exploration because this is among the very few kinds of information that are observable, measurable, and system-

atically accessible to econometricians. Management earnings guidance is one of the most significant events that releases new information to the market during a 
quarter.

4 State-dependent forecasting behavior can be a consequence of strategic information provision. Nimark and Pitschner (2019) demonstrate that asymmetry in 
forecasting may arise when an information provider slants negative news, making it more salient when reported.
3

5 On average, analysts publish their initial forecasts 43 days before earnings guidance becomes available to the market.
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Table 1

Forecast error on forecast revision.

Outcome Variable: Forecast Error FE𝑖

Winsorization at the 1% and 99% Winsorization at the 2.5% and 97.5%

Baseline Control Unscaled Baseline Control Unscaled

(1) (2) (3) (4) (5) (6)

FR𝑖 -0.0961*** -0.0963*** -0.0924*** -0.0914*** -0.0914*** -0.0736***

(0.0142) (0.0143) (0.0124) (0.0117) (0.0117) (0.0101)

Earnings of the Last Quarter 0.0036 0.0010

(0.0070) (0.0050)

Firm FEs YES YES YES YES YES YES

Obs. 110,895 110,895 110,895 110,895 110,895 110,895

Adj. R-sq 0.2125 0.2125 0.1796 0.1947 0.1947 0.1812

The standard errors are clustered on firm and calendar year-quarter following Petersen (2009).*** p<0.01, ** p<0.05, 
* p<0.1.

or her forecast for firm 𝑗 ’s EPS in quarter 𝑡 (i.e., 𝐹𝑖𝑗𝑡,1). Quarter 𝑡 ends at the date of 𝑄𝑡, and firm 𝑗 announces its EPS for quarter 𝑡 at 
the date of 𝐴𝑡. In sum, in this setting, both initial and updated forecasts are made within the same period, after 𝐴𝑡−1 and before 𝐴𝑡.

Our full sample consists of 110,895 pairs of individual analysts’ forecasts (initial and updated forecasts) issued by 6,987 different 
analysts for 3,226 district firms over the period from 1994 to 2017. A summary of statistics is reported in Appendix A.2.

2.2. Overreaction

Our investigation of how analysts revise their forecasts starts by following the approach proposed by Bordalo et al. (2020), in 
which they examine professional analysts’ forecasts of macro variables. That is, we regress ex post analyst forecast errors on ex ante 
analyst forecast revisions at the individual level. To this end, we construct both forecast error FE𝑖𝑗𝑡 and forecast revision FR𝑖𝑗𝑡. The 
former is the difference between the realized earnings per share for firm 𝑗 in quarter 𝑡 and the revised EPS forecast by individual 
analyst 𝑖 for firm 𝑗 in quarter 𝑡. The latter is the difference between the revised forecast after guidance and the initial forecast before 
guidance issued by the same analyst 𝑖 for firm 𝑗 in quarter 𝑡. To avoid the heterogeneity embedded in EPS across firms, both FE𝑖𝑗𝑡
and FR𝑖𝑗𝑡 are scaled by the stock price at the beginning of quarter 𝑡. To mitigate the impact of potential outliers, both of them are 
winsorized at the 1% and 99% level of their respective distributions. We estimate the following equation:

FE𝑖𝑗𝑡 = 𝑏0 + 𝑏1FR𝑖𝑗𝑡 + 𝛿𝑗 +𝜔𝑖𝑗𝑡, (1)

where we control for firm fixed effect (𝛿𝑗 ) to absorb time-invariant firm characteristics. Following Petersen (2009), the standard 
errors are clustered at the firm and calendar year-quarter to adjust for both intertemporal and cross-sectional correlations.

The results from estimating Equation (1) are presented in column (1) of Table 1. We find that forecast errors are negatively 
correlated with forecast revisions at the individual analyst level and statistically significant at less than the 1% level. The negative 
coefficient indicates that analysts overreact to new information over the period that the managerial guidance is received by analysts. 
Despite the settings being entirely different, this result is consistent with those found in Bordalo et al. (2020) and Broer and Kohlhas 
(2022).

We add the earnings in the last quarter (𝑡 − 1) of firm 𝑗 to the right-hand side of Equation (1) and report the results in column 
(2) of Table 1. The change in the estimated coefficient on forecast revision is negligible, and the coefficient on the earnings in the 
last quarter is close to zero and not significant. This suggests that the information about earnings in past quarters is fully utilized by 
analysts to form either initial or updated forecasts. That is the key difference from studies using SPF data, where initial and updated 
forecasts are made in two separate periods.

To ensure that our results are robust to data construction, we present results by not scaling earnings and forecasts by stock prices. 
The estimate for forecast revisions is robust, which is reported in column (3). To test whether our results are driven by outliers, we 
winsorize FE𝑖𝑗𝑡 and FR𝑖𝑗𝑡 at the 2.5% and 97.5% levels of their respective distributions and re-do the aforementioned exercises. Those 
results are reported in columns (4)-(6) of Table 1, which demonstrate the robustness of our findings.6

Two comments on the specification of Equation (1) are in order. First, incorporating the firm fixed effect into this regression is 
conceptually necessary for identifying the average overreaction. This necessity arises because we are pooling forecasting data over 
time from different firms. If there is a systematic bias in EPS forecasts that varies across firms, omitting firm fixed effects would bias 
the estimated coefficient (𝑏1) of Equation (1). Second, to address concerns about the potential Nickel bias arising from the inclusion 
of the firm fixed effect, we conduct separate estimations of Equation (1) for each firm, following the approach proposed by Bordalo 

6 Online Appendix C.1 reports additional robustness tests demonstrating that our results remain robust with different sample selection and trimming the outliers 
4

instead of winsorizing. The estimated coefficients in the aforementioned exercises are qualitatively unchanged and only different in magnitude.
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Fig. 2. Heterogeneous Overreaction. The estimated coefficients of the FE-on-FR regressions 𝑏1 and the 95% confidence interval for each running decile window are 
plotted against the window rank. Running decile window 𝑗 covers decile 𝑗 − 1, 𝑗, and 𝑗 + 1 if 𝑗 ≠ 1 or 𝑗 ≠ 9; running decile window 1 covers deciles 1 and 2, and 
running decile window 10 covers deciles 9 and 10.

et al. (2020). The median estimation of 𝑏1 is then reported in Table C.3 of Online Appendix C. The median coefficient is similar to 
that reported in Table 1.

2.3. Heterogeneous overreaction

One unique feature of our setting is that the guidance is common for all analysts, but the surprises contained in the guidance are 
not common across analysts due to their heterogeneous initial forecasts. Analysts can be surprised to different extents and even in 
different directions. One natural question arises: Do analysts overreact differently to the same information? In this section we explore 
such heterogeneity of overreaction across analysts.

First, we construct a variable guidance surprise (i.e., Surprise𝑖𝑗𝑡) to capture the observable surprise in managerial guidance for 
individual analysts. It is defined and measured by the difference between the value of guidance (i.e., 𝐺𝑗𝑡) issued by firm 𝑗 in quarter 
𝑡 and analyst 𝑖’s corresponding initial forecast (i.e., 𝐹0𝑖𝑗𝑡) for firm 𝑗 in quarter 𝑡 before guidance. That is, Surprise𝑖𝑗𝑡 ≡ 𝐺𝑗𝑡 − 𝐹0𝑖𝑗𝑡. 
For each individual analyst, the managerial guidance can be unfavorable or favorable if it falls below or exceeds the analyst’s initial 
forecast before guidance, and the managerial guidance can be large or small if it is far from or close to the analyst’s initial forecast 
before guidance.

Second, we remove outliers by trimming forecast errors, forecast revisions, and surprises at the 2.5% and 97.5% levels of their 
respective distributions (to be consistent with the nonparametric estimations in the next section). We then rank surprises from the 
most negative to the most positive, sort them into deciles, and label them from 1 to 10 according to the decile rank. To enlarge the 
subsample size and smooth estimates, we define a running decile window 𝑗 such that (1) window 𝑗 covers decile 𝑗 − 1, 𝑗, and 𝑗 + 1
if 𝑗 ≠ 1 or 𝑗 ≠ 10; (2) running decile window 1 covers deciles 1 and 2; and (3) running decile window 10 covers deciles 9 and 10.

Third, for each subsample of a running decile window, we re-estimate Equation (1) (i.e., regressing forecast errors on forecast 
revisions). We plot the estimated coefficients and confidence intervals in Fig. 2 against their window ranks. We find that analysts 
overreact to information in each subsample, i.e., the estimated coefficient 𝑏1 is negative and significant. However, the degree of 
overreaction is not constant and is U-shaped in surprises and skewed to the left. This implies that the overreaction is stronger when 
the surprises are negative and the overreaction is weaker when the surprises are larger in size.7

In summary, on the one hand, we confirm that analysts overreact to information in this particular setting. Given that the forecast 
revisions are constructed around managerial guidance, analysts are likely to overreact to guidance surprises. On the other hand, we 
discover that the way that analysts react to information depends on the characteristics of the surprises that they receive, such as the 
size and direction of the surprises. It is worth noting that this set of empirical findings are not specific to EPS forecasts.8

7 To examine whether our results are robust, we rerun the exercises with a sample where forecast errors, forecast revisions and surprises are trimmed at the 1% 
and 99% levels of their respective distributions. We also re-estimate Equation (1) for each decile of surprises without using running windows. The patterns found are 
rather similar. We relegate them to Online Appendix C.2 (see Figures C.1 and C.2, respectively).

8 For instance, I/B/E/S offers both analyst forecasts and manager guidance for firm sales. Analyzing firm sales data, we find a pattern of heterogeneous overreactions 
5

consistent with what we observed using EPS forecasts.
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Fig. 3. Nonparametric estimation, 5% trimming (2.5%, 97.5%). Panel (a) illustrates the relationship between forecast revisions and surprises in managerial guidances 
(both trimmed at 5%) that is nonparametrically estimated using the Epanechnikov kernel and the third degree of the smoothing polynomial. It is decreasing, increasing, 
and decreasing and asymmetric around the origin. The shaded areas represent the 95% confidence intervals for the respective estimations. Panel (b) illustrates its 
derivatives with respect to surprises for the range where the nonparametric estimation and the numerical derivative are relatively precise, i.e., when surprises are 
between [−0.025, 0.030]. The derivatives are negative when the surprises are large enough and positive when they are small. Forecast revisions respond more strongly 
to negative surprises than to positive surprises of the same magnitude.

2.4. Forecast revisions and surprises: mechanisms

In this section, we set out to uncover the mechanisms that underlie the heterogeneous overreaction pattern. To this end, we 
directly investigate the relationship between forecast revisions and surprises. Note that if forecast revisions are linear in surprises, 
then the degree of overreaction to new information cannot be heterogeneous (characterized in Section 4.3); and if overreaction is 
heterogeneous in the size and direction of surprises, then forecast revisions cannot be linear in surprises.

To estimate the relationship in a more reliable fashion, we resort to the nonparametric estimation approach. Using the standard 
tool of local polynomial regression, we estimate the relationship between forecast revisions and surprises by using the Epanechnikov 
kernel and the third degree of the smoothing polynomial.

Because we are interested in “large” surprises and because we estimate the relationship with local polynomials, the results can be 
affected and biased by winsorization of the data. To alleviate this concern, we instead trim both forecast revisions and surprises at the 
2.5% and 97.5% levels of their respective distributions and residualize them by controlling for time, analyst, and firm fixed effects. 
We estimate their relationship using the local polynomial specification, and the results are presented in Fig. 3(a). Forecast revisions 
are decreasing, increasing, and decreasing in surprises and are asymmetric around the origin. Fig. 3(b) illustrates its derivatives with 
respect to surprises. The derivatives are negative when the surprises are large enough and positive when they are small. Forecast 
revisions respond more strongly to negative surprises than to positive surprises of the same magnitude. In Online Appendix C.3, we 
present a range of robustness checks, and the empirical findings are robust.

To quantify the degree of asymmetry in the estimated relationship, we compute the percentage deviations of forecast revisions to 
negative surprises (i.e., Surp𝑖𝑗𝑡 < 0) from forecast revisions to positive ones of the same magnitude (i.e., −Surp𝑖𝑗𝑡 < 0) and construct 
an average conditional on surprises being negative. That is,

Ξ ≡
0

∫
−∞

|||FR
(
Surp𝑖𝑗𝑡

)|||− |||FR
(
−Surp𝑖𝑗𝑡

)||||||FR
(
−Surp𝑖𝑗𝑡

)||| dP
(
Surp𝑖𝑗𝑡|Surp𝑖𝑗𝑡 < 0

)
, (2)

where P 
(
Surp𝑖𝑗𝑡|Surp𝑖𝑗𝑡 < 0

)
is the conditional distribution of surprise that can be directly inferred from the data. The asymmetry 

measure Ξ is positive if, on average, negative surprises (i.e., Surp𝑖𝑗𝑡 < 0) result in larger forecast revisions compared to positive ones. 
If Ξ is zero, the response of forecast revisions to surprises are symmetric.

In our baseline sample, we find that Ξ = 0.18, indicating that, on average, negative surprises result in revisions that are approxi-

mately 18% stronger than revisions triggered by positive surprises of similar magnitude.

The facts documented in Sections 2.3 and 2.4 would be puzzling if one assumed that analysts know the quality of managerial 
guidance with certainty. In such a case, forecast revisions would be linear in surprises within the Gaussian environment, and the 
degree of overreaction would also be constant. Once we relax this assumption and accommodate the conjecture that the quality of 
information can be uncertain to analysts, those documented facts can be reasonable and consistent with each other. To account for 
those facts in a unifying framework, we propose a model where analysts are uncertain about the quality of information that they 
6

receive.
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3. The model

3.1. Setup

Consider a one-period static model where there exists a continuum of analysts, indexed by 𝑖 ∈ [0, 1] and a firm. The firm’s earnings 
𝜃 are stochastic. Analyst 𝑖 makes a forecast 𝐹0𝑖 about the earnings at the beginning of the period and makes an updated forecast 𝐹𝑖
at the end of the period.

Utility function. In the context of forecasting problems, we impose one restriction that analysts’ optimal forecast is precisely 𝐹 ∗ = 𝜃, 
conditional on analysts’ information being complete (i.e., the earnings 𝜃 are known to the analysts). Any utility functions that satisfy 
this restriction can be approximated by a utility function 𝑈 (⋅, ⋅) that is quadratic in both forecasts and earnings. In the main text, we 
consider one particular case among this class of quadratic utility functions, which is given by

𝑈 (𝐹 , 𝜃) = − (𝐹 − 𝜃)2 + 𝛽𝜃, (3)

where 𝛽 is a constant. To interpret parameter 𝛽, consider the scenario where analysts have complete information. They can minimize 
the forecasting errors to zero, but the realized earnings may still matter for analysts in our model. The parameter 𝛽 > 0 (𝛽 < 0) implies 
that analysts would be better (worse) off if the realized earnings 𝜃 were higher. The parameter 𝛽 will be estimated and interpreted 
in Online Appendix D.9

This utility function is used for ease of exposition and highlighting our new mechanisms. In Online Appendix F, we present a full 
characterization of the model with the most general quadratic utility function of this class. We show that it is qualitatively similar 
and provide evidence that the additional parameters in the general case are empirically irrelevant in this setting.

Information structure. We assume that the earnings follow a normal distribution with mean 0 and variance 𝜎2
𝜃
, i.e., 𝜃 ∼𝑁

(
0, 𝜎2

𝜃

)
; 

let 𝜏𝜃 = 1∕𝜎2
𝜃
. The distribution of earnings is known to all analysts. To have a direct mapping with the data, we allow each analyst 𝑖

to be endowed with private information about the earnings before making the initial forecasts, as follows:

𝑧0𝑖 = 𝜃 + 𝜄𝑖,

where 𝜄𝑖 is normally distributed with mean 0 and variance 𝜎2𝑧 , i.e., 𝜄𝑖 ∼ 𝑁
(
0, 𝜎2𝑧

)
; let 𝜏𝑧 = 1∕𝜎2𝑧 . Analyst 𝑖 makes forecast 𝐹0𝑖

with heterogeneous information 𝑧0𝑖. Analysts then receive managerial guidance released by the firm, which is a noisy signal about 
earnings:

𝑦 = 𝜃 + 𝜂,

where 𝜂 is normally distributed with mean 0 and variance 𝜎2
𝑌

, i.e., 𝜂 ∼𝑁
(
0, 𝜎2

𝑌

)
; let 𝜏𝑌 = 1∕𝜎2

𝑌
. After analysts have made their 

updated forecasts, the earnings announcement is made, and the payoffs to analysts are realized.

The information structure in this model warrants discussion. First, in this paper, we focus on a static model without modeling the 
dynamics of earnings across periods. As discussed in Section 2.1, analysts have perfect information about earnings in the last quarter. 
Both the initial and updated forecasts in the data are made after the earnings in the last quarter are known to analysts. In this case, 
forecasts of the last period’s earnings are not relevant in this period, conditional on the last quarter’s earnings themselves.10 Note 
that the updated earnings forecasts of the last period are not the initial forecasts for earnings in this period. Second, for simplicity, 
we assume that unobservable private information (such as new information from analysts’ research or acquired from other sources) 
is absent between the two rounds of forecasts. In Online Appendix F, we fully characterize a generalized model by allowing the 
presence of private information and show that all the qualitative properties remain.

Ambiguity averse preferences. The key departure of this model from the existing forecasting literature is that we assume that 
analysts are uncertain or ambiguous about the quality of the managerial guidance or their objective precision (i.e., 𝜏𝑌 ). Therefore, 
they have to form their own subjective belief about its precision (i.e., 𝜏𝑦). Such an assumption is reasonable. Analysts may not know 
the quality of the guidance with complete certainty because management has incentives not to release the best possible information 
at hand and because even the best possible estimates from the management can be plagued with noise but analysts are not certain 
about its structure.

Specifically, we let Γ𝑦 be the range of support for the possible precision 𝜏𝑦 of managerial guidance. Analysts believe that 𝜏𝑦 ∈ Γ𝑦
and possess some prior belief over Γ𝑦, whose density distribution is given by 𝑝 

(
𝜏𝑦
)
. We say that one particular 𝜏𝑦 represents a model

that generates the managerial guidance 𝑦.
Furthermore, we assume that analysts dislike uncertainty in the quality of the managerial guidance or are ambiguity averse. In 

this model, we capture such a preference of analysts by using the smooth model of ambiguity as proposed in Klibanoff et al. (2005). 
That is, analyst 𝑖 maximizes the objective function:

9 Section 5.1 provides discussions on empirical evidence that analysts’ utility can be dependent on earnings. In this section, we provide a characterization in which 
𝛽 can take any value.
10 In fact, we show in Section 2.2 that earnings in the last quarter cannot predict forecast errors in the current quarter conditional on forecast revisions and are 
7

orthogonal to forecast revisions in the data.
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∫
Γ𝑦

𝜙
(
𝔼𝜏𝑦

[
𝑈

(
𝐹𝑖, 𝜃

) |𝑧0𝑖, 𝑦])𝑝(𝜏𝑦|𝑧0𝑖, 𝑦)d𝜏𝑦, (4)

where 𝜙 (⋅) is some increasing, concave and twice continuously differentiable function. In addition, 𝔼𝜏𝑦
[
𝑈

(
𝐹𝑖, 𝜃

) |𝑧0𝑖, 𝑦] denotes 
the mathematical expectation conditional on analyst 𝑖’s information set 

(
𝑧0𝑖, 𝑦

)
for a particular model 𝜏𝑦 (or a certain precision of 

managerial guidance). In what follows, we use 𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
to denote the expected utility of analyst 𝑖, unless it causes confusion. 

The density of the posterior belief over possible models is assumed to be Bayesian and denoted by 𝑝 
(
𝜏𝑦|𝑧0𝑖, 𝑦).

The curvature of function 𝜙 (⋅) captures an aversion to mean-preserving spreads in 𝔼𝜏𝑦𝑖 induced by ambiguity in 𝜏𝑦.11

The more concave the function 𝜙 (⋅) is, the stronger the ambiguity aversion. In other words, it characterizes analysts’ taste for 
ambiguity. In this paper, we consider a function 𝜙 (⋅) that features constant absolute ambiguity aversion (CAAA) following Cerreia-

Vioglio et al. (2022) throughout:

𝜙 (𝑡) = −1
𝜆
𝑒−𝜆𝑡, (5)

where 𝜆 ≥ 0 measures the degree of ambiguity aversion. Two special cases are nested. When 𝜆 = 0 and 𝜙 (⋅) is linear, this corresponds 
to the case where analysts are ambiguity neutral or fully Bayesian. When 𝜆 → +∞, this corresponds to the case where analysts’ 
aversion to ambiguity is infinite, which is the classic Wald (1949) Maxmin criterion.12

3.2. Noisy information expectations: RE benchmark

Our framework is a generalized version of the standard forecasting problem in which analysts possess noisy information and 
minimize the mean-squared error of their forecasts of the random variable. In other words, the noisy information benchmark is a 
special case of our model when agents are ambiguity neutral (i.e., 𝜆 = 0) and there exists no uncertainty in information quality (i.e., 
Γ𝑦 is singleton).13 In this section, we characterize such a special case and illustrate why it fails to account for the empirical patterns 
documented in Section 2.3 and 2.4 and why deviations from this benchmark are necessary.

With noisy information expectations, the optimal initial and updated forecasts are such that

FNI
0𝑖 = 𝔼

[
𝜃|𝑧0𝑖] ; FNI

𝑖 = 𝔼
[
𝜃|𝑧0𝑖, 𝑦] ,

where 𝔼 
[
𝜃|𝑖] denotes the conditional expectations (i.e., Bayesian posterior). The relationship between FNI

0𝑖 and FNI
𝑖 is therefore given 

by

FNI
𝑖 =

(
1 − 𝜅𝑦

)
FNI
0𝑖 + 𝜅

RE𝑦,

where 𝜅RE is the relevant weight assigned to the public information:

𝜅RE ≡ 𝜏𝑌
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑌

> 0. (6)

Therefore, the relevant forecast revision is given by

FRNI
𝑖 ≡ FNI

𝑖 − FNI
0𝑖 = 𝜅

RE
(
𝑦𝑖 − FNI

0𝑖
)
, (7)

and forecast error is given by

FENI
𝑖 ≡ 𝜃 − FNI

𝑖 = 𝜅𝜃𝜃 − 𝜅𝑧𝜄𝑖 − 𝜅RE𝜂, (8)

where 𝜅𝜃 ≡ 𝜏𝜃
𝜏𝜃+𝜏𝑧+𝜏𝑌

> 0 and 𝜅𝑧 ≡ 𝜏𝑧
𝜏𝜃+𝜏𝑧+𝜏𝑌

> 0.

Lemma 1 (FR-on-surprise and FE-on-FR). In the noisy expectation benchmark, forecast revisions are linear in guidance surprises and uncor-

related with forecast errors,

Cov
(
FENI
𝑖 ,FRNI

𝑖

)
= 0.

Observe that the term (𝑦 − FNI
0𝑖 ) in Equation (7) is the theory counterpart of managerial guidance surprises in our empirical 

exercise. Equation (7) predicts that forecast revisions should be linear in guidance surprises. However, this prediction contradicts the 
non-monotone and asymmetric relationship documented in Section 2.4.

11 Ambiguity aversion differs from risk aversion, which is implicitly captured by 𝑈 (
𝐹𝑖, 𝜃

)
. In this model, it is the aversion to ambiguity rather than the aversion to 

risk that drives our results.
12 The model with extreme ambiguity aversion is a special case of the multiple priors preference proposed by Gilboa and Schmeidler (1989), where the priori set of 

priors include all Dirac measures of each model.
13 In the noisy information benchmark, the parameter 𝛽 in Equation (3) plays no role at all. However, it is important for the optimal forecasts when agents have 
8

ambiguity averse preferences.
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Further, using Equations (7) and (8), it is evident that forecast revisions and forecast errors are uncorrelated. It then predicts 
that the estimated coefficient in the FE-on-FR regression should be 0, i.e., no overreaction at the individual level. This prediction 
contradicts evidence that analysts overreact to new information (documented in Section 2.2) and that such overreaction varies in a 
non-monotonic and asymmetric fashion (documented in Section 2.3).

The reason why the noisy information benchmark cannot capture the empirical patterns, is that the optimal forecasting rule 
is state-independent and determined by constant signal-to-noise ratios. That is, the weight 𝜅RE assigned to the public signal (i.e., 
managerial guidance in this context) is constant and independent of the realization of the public signal. However, evidence suggests 
that the weight should vary depending on the realization of public signal in a particular way: the weight should be larger when 
the surprise is negative than when it is positive but of the same magnitude; and the weight should be negative (instead of positive) 
when surprises are large enough. In the following section, we demonstrate that our framework, featuring the ambiguous information 
quality and ambiguity aversion towards uncertainty, can generate a state-dependent forecasting rule that is consistent with the data.

3.3. Equilibrium characterization

In this section, we turn to the characterization of analysts’ optimal forecasts. The initial forecast of each analyst 𝐹 ∗
0𝑖 is derived by 

Bayes’ rule:

𝐹 ∗
0𝑖 =

𝜏𝑧
𝜏𝑧 + 𝜏𝜃

𝑧0𝑖. (9)

To choose the optimal updated forecast 𝐹 ∗
𝑖 after obtaining a new set of information, analysts maximize the objective in Equation (4). 

That is, the optimal forecast 𝐹 ∗
𝑖 is such that the first-order condition holds:

𝐹𝑖 =∫
Γ𝑦

(
𝜏𝑧𝑧0𝑖 + 𝜏𝑦𝑦
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)d𝜏𝑦, (10)

where the distorted posterior belief 𝑝̃ is such that

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖) ∝𝜙′ (𝔼𝜏𝑦𝑖 [

𝑈
(
𝐹𝑖, 𝜃

)])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Pessimistic Distortion

𝑝
(
𝑧0𝑖, 𝑦|𝜏𝑦)𝑝(𝜏𝑦)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Bayesian Kernel

. (11)

The term with the combined fraction in Equation (10) captures the posterior mean of the random variable 𝜃 for a particular model 
𝜏𝑦, where the weights assigned to observations 

(
𝑧0𝑖, 𝑦

)
are dictated by Bayes’ rule.

The distribution of 𝜏𝑦 is updated by following Equation (11). When analysts are ambiguity neutral (i.e., 𝜆 = 0), 𝜙′(⋅) is constant and 
the posterior distribution of 𝜏𝑦 simply follows Bayes’ rule. When analysts are ambiguity averse (i.e., 𝜆 > 0), the posterior distribution 
of 𝜏𝑦 is distorted by their pessimistic attitude: its density is reweighted by the term 𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
.

To understand such pessimism, consider analyst 𝑖 who obtains observations (𝑧0𝑖, 𝑦) and contemplates releasing a forecast 𝐹𝑖. 
She views model 𝜏𝑦 as the more likely model if she is worse off under such a model. That is, a model with 𝜏𝑦 that generates a 
lower expected utility for analyst 𝑖 is given a higher weight in her distorted posterior belief. Recall that 𝜙′(⋅) > 0 and 𝜙′′(⋅) < 0. 
Consequently, the posterior belief 𝑝̃

(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖) depends on her forecast 𝐹𝑖. Such a dependence is the key difference from the 

standard forecasting problems.

To facilitate the subsequent analysis and characterize the pessimism, define the surprise of managerial guidance 𝑦 for analyst 𝑖 by 
𝑠𝑖 ≡ 𝑦 − 𝐹 ∗

0𝑖, i.e., the difference between the guidance 𝑦 and the analyst’s initial forecast 𝐹 ∗
0𝑖. The optimality condition of Equation 

(10) is represented by

𝐹𝑖 = 𝐹 ∗
0𝑖 + 𝜅

(
𝐹 ∗
0𝑖, 𝑠𝑖, 𝐹𝑖

)
⋅ 𝑠𝑖, (12)

where

𝜅
(
𝐹 ∗
0𝑖, 𝑠𝑖, 𝐹𝑖

) ≡ ⎡⎢⎢⎢⎣∫Γ𝑦
(

𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
)
d𝜏𝑦

⎤⎥⎥⎥⎦ , (13)

and the distorted posterior belief is such that

𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
) ≡ 𝑝̃(𝜏𝑦|𝑧0𝑖, 𝐹 ∗

0𝑖, 𝑠𝑖 + 𝐹
∗
0𝑖;𝐹𝑖

)
. (14)

For any particular model 𝜏𝑦, the optimal response to the surprise 𝑠𝑖 is 𝜏𝑦∕ 
(
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
, which is dictated by Bayes’ rule and 

increasing in 𝜏𝑦 (the quality of managerial guidance). The response to the surprise (represented by 𝜅) is a weighted average over the 
model space by using the distorted distribution 𝑝̃

(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
)
, and therefore it is bounded between 0 and 1. In this representation, 
9

the pessimistic preference of analysts is specifically captured by the following lemma.
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Lemma 2 (Pessimism). Consider any 𝐹 ′
𝑖 > 𝐹𝑖 and the likelihood ratio

𝐿
(
𝜏𝑦
) ≡ 𝑝̃(𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹
′
𝑖

)
𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
) .

If the surprise 𝑠𝑖 is positive, 𝐿 
(
𝜏𝑦
)

decreases in 𝜏𝑦; if it is negative, 𝐿 
(
𝜏𝑦
)

increases in 𝜏𝑦.

Suppose that the surprise 𝑠𝑖 is positive. An analyst 𝑖 who contemplates a higher forecast 𝐹 ′
𝑖 would consider the positive surprise 

more likely to be informative and assign a lower probability density for models with a high 𝜏𝑦 in her distorted belief 𝑝̃. Therefore, 
𝜅 is decreasing in 𝐹𝑖. In contrast, suppose that the surprise 𝑠𝑖 is negative. An analyst 𝑖 who contemplates a higher forecast would 
consider the negative surprise more likely to be informative and therefore assign a higher probability density to models with high 𝜏𝑦
in her distorted belief. Therefore, 𝜅 is increasing in 𝐹𝑖.

As implied by Lemma 2, the right-hand side of Equation (12) always decreases in 𝐹𝑖. The optimal forecast 𝐹 ∗
𝑖 is the fixed point 

of Equation (12). The following proposition summarizes the equilibrium existence and uniqueness of the forecasting problem.

Proposition 1 (Existence and uniqueness). If analysts are ambiguity averse (𝜆 > 0), there always exists a unique optimal forecast 
𝐹 ∗
𝑖

(
𝐹 ∗
0𝑖, 𝑠𝑖

)
that satisfies (12) and a unique optimal response 𝜅∗

(
𝑠𝑖
) ≡ 𝜅 (𝐹 ∗

0𝑖, 𝑠𝑖, 𝐹
∗
𝑖

)
associated with it.

An interesting special case is nested in this framework: if analysts are ambiguity neutral, there is no dependence of analyst 𝑖’s 
posterior belief 𝑝̃ on 𝐹𝑖. Bayes’ rule dictates that the posterior distribution of 𝜏𝑦 only depends on the magnitude of the surprise, but 
not its sign. Therefore, the response to surprises in managerial guidance should always be symmetric.

4. Equilibrium analysis

This section presents a set of equilibrium analyses corresponding to the empirical facts documented in Section 2. We demonstrate 
that the two basic model mechanisms (uncertainty in quality and aversion to uncertainty) and their interaction can help account for 
those empirical patterns.

4.1. Asymmetry

We first characterize the impacts of ambiguity aversion on analysts’ asymmetric responses to negative and positive surprises in 
managerial guidance. To state this formally, let a pair of surprises be 

(
𝑠−𝑖 , 𝑠

+
𝑖

)
, such that 𝑠−𝑖 < 0 < 𝑠+𝑖 and 𝑠−𝑖 + 𝑠

+
𝑖 = 0.

Proposition 2. If analysts are ambiguity averse, forecast revisions in response to surprises are asymmetric. Specifically,(
𝜅∗

(
𝑠−𝑖

)
− 𝜅∗

(
𝑠+𝑖

))
𝛽 ≥ 0,

where the equality holds if and only if 𝛽 = 0.

To illustrate this, consider the case where analysts are better off when the earnings realization is high (i.e., 𝛽 > 0). That is, analysts 
consider the news that suggests higher realizations of earnings to be favorable.

Proposition 2 states that analysts would always be less responsive to positive surprises (i.e., 𝑠+𝑖 , favorable news) than to negative 
surprises (i.e., 𝑠−𝑖 , unfavorable news). The mechanism is as follows. In this model, analysts are uncertain about the quality of the 
information source and, therefore, need to assess its quality based on the news itself. Given that favorable news improves analyst 
𝑖’s expected utility, she would behave with more caution (due to her ambiguity averse preferences) and “discount” the quality of 
favorable news. Conversely, given that negative surprises or unfavorable news reduce her expected utility, she would “overcount” its 
quality, i.e., assign a high probability density to models with high quality 𝜏𝑦. Therefore, analyst 𝑖 responds to negative surprises to a 
larger extent than to positive surprises of the same magnitude, that is, 𝜅∗

(
𝑠−𝑖

)
> 𝜅∗

(
𝑠+𝑖

)
.

4.2. Nonmonotonicity

Next, we show that the model also features a nonmonotonic relationship between forecast revisions and surprises. Two key take-

away messages are as follows. First, the nonmonotonicity does not rely on ambiguity aversion but instead on ambiguity (uncertainty) 
in quality. Second, in fact, the nonmonotonicity disappears when the degree of ambiguity aversion becomes extreme. Proposition 3

formalizes the former, and Proposition 4 characterizes the latter. To simultaneously capture both nonmonotonicity and asymmetry, 
neither ambiguity neutral preferences nor extreme ambiguity aversion is feasible.

Proposition 3. If analysts are ambiguity neutral (𝜆 = 0), the optimal forecast revision 𝐹 ∗
𝑖 − 𝐹 ∗

0𝑖 increases in 𝑠𝑖 conditional on surprise 𝑠𝑖
being small in magnitude and decreases in 𝑠𝑖 conditional on surprise 𝑠𝑖 being sufficiently large in magnitude. The forecast revision at the 
10

individual level 𝐹 ∗
𝑖 − 𝐹 ∗

0𝑖 is always symmetric around the origin.
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Fig. 4. Monotonicity and the degree of ambiguity aversion. Panel (a) illustrates the case where analysts are ambiguity neutral. Forecast revisions are decreasing, 
increasing and decreasing in surprises. Panel (b) illustrates the case where analysts have the extreme degree of ambiguity aversion (𝜆 → +∞). Note that 𝛽 > 0. 
Forecast revisions are increasing in surprises and asymmetric. Panel (c) illustrates the case where analysts’ ambiguity aversion is moderate. Both asymmetry and 
nonmonotonicity are present.

Given that the quality of guidance is uncertain, analyst 𝑖 updates her belief through two mechanisms. First, for any given quality 
𝜏𝑦, analyst 𝑖 updates her belief about the earnings upon receiving the guidance. This mechanism dictates that positive (negative) 
surprises raise (suppress) forecasts. Second, she also updates her belief about the distribution of quality. When the surprise is large, 
Bayesian analysts will assign a higher probability density to low qualities. That is, they tend to believe that large surprises are of 
low quality. Crudely, this is because low-quality information sources would have fatter tails and be more likely to generate large 
surprises. In other words, the posterior distribution of information quality given a small surprise first-order stochastically dominates 
the posterior distribution given a large surprise. Therefore, this mechanism implies that forecast revisions can be less responsive to 
surprises when they are larger.

For small enough surprises, the second mechanism (i.e., updating the distribution of quality) is less consequential, and therefore 
forecast revisions increase in surprises. For large enough surprises, the second mechanism dominates the first, and, as a result, forecast 
revisions decrease in surprises. Fig. 4(a) illustrates this pattern that forecast revisions decrease and increase and then decrease in 
surprises. The symmetry is trivial given that analysts are Bayesian.

Now, we turn to the other polar cases: extreme ambiguity aversion (𝜆 → +∞) or the classic Maxmin criterion.

Proposition 4. If analysts have extreme degree of ambiguity aversion (𝜆 → +∞), the optimal forecast revision 𝐹 ∗
𝑖 − 𝐹 ∗

0𝑖 is increasing in 
surprise 𝑠𝑖.

When surprises are relatively small in magnitude, the Bayesian mechanism dictates that forecast revisions increase in surprises 
(Proposition 3). Furthermore, the ambiguity aversion mechanism also dictates an increasing relationship. Analyst 𝑖 tends to believe 
that negative surprises are of higher (lower) quality than positive surprises of the same magnitude if 𝛽 > 0 (𝛽 < 0). Given that 
the ambiguity aversion is extreme, analysts believe that the quality of negative news is of the highest possible value and that of 
positive news is of the lowest possible value if 𝛽 > 0 and vice versa. Fig. 4(b) illustrates the case where 𝛽 > 0 and 𝜆 → +∞. In this 
case, analyst 𝑖 believes that negative surprises are of the highest quality and positive surprises are of the lowest quality. Therefore, 
forecast revisions increase in surprises with a flatter slope when surprises are positive and with a steeper slope when surprises are 
negative.

When surprises are very large in magnitude, the Bayesian mechanism dictates that forecast revisions decrease in surprises (Propo-

sition 3). However, this is dominated by the impact of extreme ambiguity aversion. Therefore, forecast revisions always increase in 
surprises, despite the sign of 𝛽.

In summary, the contrast of the two polar cases reveals (i) that ambiguity in guidance quality gives rise to non-monotonicity 
in surprises and (ii) that aversion to such ambiguity leads to asymmetric responses to negative and positive surprises. Our model 
of finite ambiguity aversion lies in between. Fig. 4(c) illustrates the relationship between forecast revisions and surprises when the 
degree of ambiguity aversion is moderate. The optimal forecast revision is not monotonically increasing, which resembles the case 
of ambiguity neutrality. Nevertheless, it is also asymmetric, which resembles the case of extreme ambiguity aversion.

4.3. Heterogeneous overreaction: theoretical counterpart

The preceding two subsections characterize how forecast revisions respond to surprises in our model and demonstrate its con-

sistency with the data. In this section, we offer a direct theoretical counterpart for the cross-sectional heterogeneous overreaction 
pattern documented in Section 2.3.

We begin our investigation by constructing the FE-on-FR coefficients in Equation (1) in the neighborhood of a particular surprise 
11

level. This construction is the theoretical counterpart of empirical coefficients in each running decile window shown in Fig. 2. 
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It allows us to study how overreaction varies over surprise in the model and directly map those model predictions to the data. 
Specifically, let counterpart of the concerning coefficient be

𝑏̂1
(
𝑠𝑚, 𝜖

) ≡ Cov
(
FE𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) .

The term 𝑏̂1
(
𝑠𝑚, 𝜖

)
captures the FE-on-FR coefficient on an open interval 𝕀 

(
𝑠𝑚, 𝜖

)
, where 𝑠𝑖 is its middle point 𝑠𝑚 and the width is 

𝜖; that is, 𝕀 
(
𝑠𝑚, 𝜖

)
=
(
𝑠𝑚 − 𝜖, 𝑠𝑚 + 𝜖

)
. Observe that when 𝑠𝑚 = 0 and 𝜖 goes to ∞, 𝑏̂1

(
𝑠𝑚, 𝜖

)
converges to the estimated coefficient of 

the canonical FE-on-FR regression that characterizes average degree of overreaction.

We can further show that for sufficiently small 𝜖,

𝑏̂1
(
𝑠𝑚

) ≡ lim
𝜖→0
𝑏̂1

(
𝑠𝑚, 𝜖

)
≈− 1 + 𝜅RE

𝜅
(
𝑠𝑚

)
+ 𝜅′

(
𝑠𝑚

)
𝑠𝑚

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1st-order approx. of 𝜕FR𝑖∕𝜕𝑠𝑖 at 𝑠𝑖 = 𝑠𝑚

, (15)

where 𝜅RE denotes the responsiveness to guidance surprise in the benchmark model with rational expectation, which is characterized 
by Bayes’ rule (see Equation (6)). The derivation is relegated to Appendix B.

Note that the denominator on the right-hand side of Equation (15) represents the first-order approximation of the marginal effect 
of guidance surprise 𝑠𝑖 on forecast revisions FR𝑖, evaluated at the midpoint of the interval 𝕀(𝑠𝑚, 𝜖), specifically 𝑠𝑖 = 𝑠𝑚, when 𝜖
is sufficiently small. It is important to highlight that it captures the relation between forecast revisions and surprises around the 
point 𝑠𝑖 = 𝑠𝑚. In other words, Equation (15) provides a theoretical mapping between the cross-sectional distribution of FE-on-FR 
coefficients and the FR-on-Surprise relation.

To illustrate, consider a special case, in which forecast revisions are linear in surprises: FR𝑖 = 𝜅𝑠𝑖 with 𝜅 representing the respon-

siveness to guidance surprise. It is worth noting that a wide range of expectation formation theories exhibit this feature, including 
noisy information expectation, diagnostic expectation, overconfidence, and parsimonious forms of loss aversion. Linearity in expec-

tation formation implies that

𝑏̂1
(
𝑠𝑚

)
= −1 + 𝜅RE∕𝜅,

with equality holds exactly. Analysts would overreact (or underreact) to guidance surprises if and only if the responsiveness, repre-

sented by 𝜅, is larger (or smaller) than 𝜅RE. In other words, when forecast revisions to surprises are state-independent, the degree of 
overreaction (or underreaction) is shown to be homogeneous.

In our model, the optimal response 𝜅
(
𝑠𝑖
)

is state dependent. The cross-sectional pattern of heterogeneous overreaction in fact 
inherits the properties of non-monotonicity and asymmetry displayed in the FR-on-Surprise relation. The following proposition 
summarizes the results.

Proposition 5. Suppose analysts are ambiguity averse (i.e., 𝜆 > 0) and prefer better earnings outcomes (i.e., 𝛽 > 0).

i. Analysts’ overreaction (or underreaction) to guidance surprise is asymmetric with stronger overreaction (or weaker underreaction) for 
negative surprises, when surprises are sufficiently small in size:

lim
𝑠𝑖→0

d𝑏̂1
(
𝑠𝑖
)

d𝑠𝑖
> 0,

where 𝑏̂1
(
𝑠𝑖
)

refers to the FE-on-FR coefficient around the neighborhood of 𝑠𝑖.
ii. Analysts’ overreaction (or underreaction) is weaker (or stronger) when guidance surprise is extreme than when it is moderate:

𝑏̂1 (0) < lim|𝑠𝑖|→∞
𝑏̂1

(
𝑠𝑖
)
.

Note that the term lim𝑠𝑖→0 d𝑏̂1
(
𝑠𝑖
)
∕d𝑠𝑖 reduces to zero if analysts’ overreaction (or underreaction) to guidance surprise is sym-

metric. Furthermore, item (ii) in this proposition is a sufficient condition for the non-monotonicity pattern.

5. Discussions

In this section, we address a range of relevant issues concerning our theory. In Section 5.1, we address the issue of whether our 
mechanism is quantitatively relevant by structurally estimating this model and comparing it with the estimated pattern found in the 
data. In Section 5.2, we test auxiliary predictions derived from our model, which further corroborates the mechanism proposed. In 
Section 5.3, we also consider various alternative hypotheses and show that the new empirical patterns documented in this paper 
12

cannot be accounted for by existing theories.
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5.1. Quantitative analysis

While we have demonstrated that the qualitative patterns of asymmetry and non-monotonicity in our model align with those ob-

served in the data, a question arises about the model’s quantitative informativeness regarding the empirical findings. Additionally, a 
set of parameters characterizing the utility function and ambiguity aversion play a crucial role in determining the model’s qualitative 
properties. However, these parameters remain unobservable.

To address these two issues, we proceed to structurally estimate this model, using the simulated method of moments to match 
the relationship between forecast revisions and surprises that is empirically estimated in Section 2.4.14 Then the estimated model is 
interpreted and used to revisit the pattern of heterogeneous overreaction (documented in Sections 2.2 and 2.3) and inform the key 
parameters. While Online Appendix D provides details of the estimation, this section summarizes the key findings.

Unobservable parameters. The degree of ambiguity aversion is the key to our model, and its value is estimated to be 𝜆 = 449.9. On 
the one hand, it is consistent with our model prediction that neither extreme ambiguity aversion (𝜆 → +∞) nor ambiguity neutral 
preferences (𝜆 = 0) would be realistic for analysts in this setting. It is an important finding that justifies the use of smooth model 
of ambiguity. On the other hand, it is worth noting that, with the reduced form utility specification, the estimated 𝜆 is only in 
proportion to the actual degree of ambiguity aversion and it can be inflated by a constant shifter in utility function.15

Furthermore, the parameter 𝛽 that characterizes the utility function is estimated to be positive, i.e., 𝛽 = 1.37, indicating that 
analysts are likely to care about the earnings performance of firms that they cover. Prior empirical studies suggest that it is plausible 
that 𝛽 is positive. There are multiple channels through which financial analysts would benefit from better earnings performance of 
the firms that they cover and therefore view positive surprises in managerial guidance as favorable. For example, stronger earnings 
performance can be rewarding to financial analysts who make earnings forecasts and recommendations for the underlying stocks 
through the trading commissions channel.16

Quantitative relevancy. To examine whether our estimated model can produce the pattern of heterogeneous overreaction found in 
the data (in Section 2.3), we utilize the simulated data and construct the surprises observable to the econometrician in the same way 
as we do with the empirical data. We rank surprises from the most negative to the most positive and sort them into deciles, labelling 
them from 1 to 10 according to the decile rank. We further define a running decile window 𝑗, such that (1) the window 𝑗 covers 
decile 𝑗 − 1, 𝑗, and 𝑗 + 1 if 𝑗 ≠ 1 or 𝑗 ≠ 10; (2) running decile window 1 covers deciles 1 and 2; and (3) running decile window 10
covers deciles 9 and 10. For each subsample, we re-estimate Equation (1). We plot the estimated coefficients and confidence intervals 
in Fig. 5 against their window ranks. In the simulated data, we find that the pattern of heterogeneous overreaction is U-shaped and 
skewed to the left, which is consistent with our model predictions in Section 4.3 and also close to the pattern in the empirical data 
(Fig. 2).

5.2. Auxiliary predictions

In this paper, we provide a theory about how the expectation is formed when forecasters are not certain of the quality of the 
information that they receive. Our theory organizes a number of facts that we document with the earnings forecast data. In this 
section, we further show that our theory provides two auxiliary predictions that are consistent with the earnings forecast data.

Pessimistic bias. If the analysts in our sample are indeed ambiguity averse, then there should be a pessimistic bias in their beliefs. 
That is because ambiguity averse analysts react to negative guidance surprises more strongly than positive ones, since they are 
ambiguous about the precision of manager guidance. The revised forecasts, on average, over-represent negative guidance surprises, 
leading to a systematic pessimistic bias. The following proposition summarizes the result:

Proposition 6. In this model, the optimal initial forecasts 𝐹 ∗
𝑖0 are unbiased, but the revised forecasts 𝐹 ∗

𝑖 are pessimistically biased, which 
leads to systematically positive forecast errors:

14 In the benchmark model, for simplicity, we do not allow analysts to acquire private information after they release their initial forecasts. Online Appendix F 
provides full characterization of the model by allowing for private information. In this structurally estimated model, we also allow for private information.
15 To be specific, consider a model in which the degree of ambiguity aversion is 𝜆̂ and utility function is 𝑈 (

𝐹𝑖, 𝜃
)
= −𝜒

(
𝐹𝑖 − 𝜃

)2 − 𝜒𝛽𝜃, for some positive shifter 
𝜒 > 0. It can be shown that our model is isomorphic to it on condition that 𝜆 = 𝜒𝜆̂. That is, a large 𝜒 would inflate the estimated 𝜆 in our model. The range for the 
estimated degree of ambiguity aversion is quite large in the literature and is sensitive to the model setup and estimation method. For example, based on asset pricing 
evidence, Gallant et al. (2015) estimated a degree of relative ambiguity aversion at about 66, while Collard et al. (2018) calibrated the degree of ambiguity aversion 
to be around 12.
16 Financial analysts aim to boost stock trading and generate trading commissions for their brokerage houses. Positive recommendations based on earnings ex-

pectations tend to increase trading volume, benefiting the analysts. Studies like Barber and Odean (2008) show that investors are inclined to follow these positive 
recommendations, leading to higher trading activity. Additionally, research by Groysberg et al. (2011) and Brown et al. (2015) reveals that sell-side analysts’ com-

pensation is linked to underwriting business and trading commissions of the stocks they cover directly. These analysts often focus on firms with promising earnings 
prospects (McNichols and O’Brien, 1997; Das et al., 2006), which in turn generate underwriting business and trading commissions for their brokerage houses (Alford 
13

and Berger, 1999; Niehaus and Zhang, 2010).
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Fig. 5. Overreaction by surprise deciles with simulated data. Using simulated data, we report the estimated coefficients of the FE-on-FR regressions 𝑏1 for each running 
decile window, and we plot them against the window rank. Running decile window 𝑗 covers decile 𝑗 − 1, 𝑗, and 𝑗 + 1 if 𝑗 ≠ 1 or 𝑗 ≠ 10; running decile window 1
covers deciles 1 and 2, and running decile window 10 covers deciles 9 and 10.

Table 2

Forecast error on constant: median coefficients (×100 percent).

Firm-by-Firm Forecast Error on Constant Regressions

Initial Forecasts Revised Forecasts

Median -0.040 0.040

(p 2.5, p 97.5) (-0.085 0.011) (0.019 0.057)

(p 5.0, p 95.0) (-0.067 0.06) (0.022 0.056)

No. of firms. 786 786

We report the 5% (row 2) and 10% (row 3) bootstrapped confidence intervals, the bound-

aries of which are the 2.5, 5.0, 95.0, and 97.5 percentiles of the estimated median coeffi-

cients out of the 500 bootstrap samples. Following Bordalo et al. (2020), these samples are 
obtained from block bootstrap the panel using blocks of 30 quarters.

𝔼
[
FE0𝑖

] ≡ 𝔼
[
𝜃 − 𝐹 ∗

0𝑖
]
= 0; 𝔼

[
FE𝑖

] ≡ 𝔼
[
𝜃 − 𝐹 ∗

𝑖

]
> 0,

where 𝔼 [⋅] refers to the unconditional expectation with respect to the objective data generating process.

Bias in forecast errors can be obtained by regressing forecast errors on a constant and examining the estimated coefficient. To 
address the heterogeneity in the data generating process across firms, we run the aforementioned regression on a firm-by-firm basis 
and report the distribution of estimated coefficients. To ensure an adequate number of observations for each firm, we focus on a 
subset of firms that have provided earnings guidance for at least 12 consecutive quarters during our sample period. Table 2 presents 
the median estimates of forecast errors obtained from these firm-specific regressions, along with confidence intervals generated 
through block bootstrapping the panel data.

Interestingly, in column (1), the median estimate for initial forecasts is negative but insignificant, as indicated by the bootstrapped 
confidence interval. Column (2) presents the median estimate for revised forecasts, which is positive and significant. These results 
suggest that initial forecasts are unbiased, while revised forecasts exhibit a systematic pessimistic bias. This pattern aligns with the 
predictions of our theory.

Heterogeneity in quality. In this paper, our underlying assumption is that the quality of firms’ earnings guidance is uncertain. How-

ever, this uncertainty likely varies across firms for analysts. Established firms with good reputations may offer high-quality managerial 
guidance, leading analysts to have minimal doubts about its quality. For these firms with low or no uncertainty in earnings guidance 
quality, our theory suggests that analysts’ forecast revisions should exhibit a close-to-linear relationship with guidance surprises. In 
other words, the connection is expected to be both monotonic and symmetric. This is because, once the uncertainty in quality is 
14

eliminated, analysts update their beliefs solely based on the guidance and do not need to reassess the quality.
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Fig. 6. Nonparametric estimation using a subsample with the top 5% of firms in terms of guidance precision. Panel (a) illustrates the relationship between forecast 
revisions and surprises in managerial guidance that is nonparametrically estimated using the Epanechnikov kernel and the third degree of the smoothing polynomial. 
The shaded areas represent the 95% confidence intervals for the respective estimations. Panel (b) illustrates the derivative of forecast revisions with respect to 
surprises.

To test this prediction using our data, a conceptual challenge arises: the perceived uncertainty in guidance quality is not observ-

able and, therefore, not measurable. To overcome this challenge, we proxy for it using the observed average quality in the data, 
specifically, the ex post variance of the differences between guidance and actual earnings. Our assumption is that the perceived 
uncertainty in quality is low if the observed average quality is high.

We construct a subset comprising firms providing highly precise earnings guidance, indicating low uncertainty about their quality. 
Initially, we rank firms based on their average guidance quality within our full sample of 110,895 individual analyst forecasts, 
encompassing 16,241 firm-quarter observations. To be consistent with previous empirical exercises, we then trim realized earnings 
and management guidance at the 2.5% and 97.5% percentiles, yielding 15,427 firm-quarter observations. By regressing management 
guidance on the same-quarter realized earnings, controlling for year-quarter fixed effects, we obtain residuals. Firms present for fewer 
than 5 quarters are excluded, resulting in a reduced sample of 1,035 firms. Next, we compute standard deviations of the residuals 
for each firm and sort them accordingly. We concentrate on the top 5% of firms exhibiting the highest average guidance quality, 
forming a subsample of 2,521 individual analyst forecast revisions and guidance surprises.

Using this subsample, we re-estimate the relationship between forecast revisions and guidance surprises by following the same 
procedure as detailed in section 2.4. The results are shown in Fig. 6(a). The relationship between forecast revisions and surprises 
is almost linear, unless the surprises are relatively very large and positive. The derivative estimated and shown in Fig. 6(b) is close 
to a constant when the surprises are not too large, thus contrasting with the derivative estimated using the full sample (shown in 
Fig. 3(b)). Additionally, the asymmetry measure Ξ, computed using Equation (2), is found to be -0.01. This value, close to zero, 
indicates a nearly symmetrical pattern in expectation formation when guidance quality has low or no uncertainty.

5.3. Alternative hypotheses

In this paper, we provide a simple unified framework to account for new facts regarding how analysts update their forecasts 
or form expectations. It is important that our estimated model can generate the skewed U-shaped pattern of overreaction that 
is consistent with the data. This paper is the first that discovers and rationalizes this set of facts in the literature of expectation 
formation. Nevertheless, we acknowledge that there could be other mechanisms that simultaneously contribute to the observed 
patterns. We examine several likely candidates in sequence, which helps differentiate our theory from those in the existing literature. 
This section provides a summary of our investigations and the details are relegated to Online Appendix E.

Diagnostic expectations and overconfidence. Two related theories are commonly utilized to explain the observed overreaction patterns 
present in SPF data. Bordalo et al. (2018) present the theory of diagnostic expectations, a non-Bayesian model of belief formation that 
formalizes the concept of the representativeness heuristic (Kahneman and Tversky, 1972): forecasters overweigh states that are more 
likely in light of the arrival of new signals and consequently overreact to new information when forming their expectations. Broer 
and Kohlhas (2022) show that overconfidence can provide a rationalization for overreaction, i.e., forecasters subjectively believe 
new signals to be more accurate than they actually are. Once we allow for this set of behavioral features in the noisy information 
benchmark specified in Section 3.2, overreaction to new information emerges. However, forecast revisions are still linear in surprises 
and the degree of overreaction is constant and does not depend on realizations of surprises. This set of model predictions are 
15

inconsistent with the data.
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Loss aversion. Another plausible conjecture is that analysts exhibit loss aversion instead of ambiguity aversion. To explore this 
possibility, we consider two widely used variants of loss aversion in the literature. Capistrán and Timmermann (2009) propose a 
parsimonious setup with analytical solutions, while Elliott et al. (2008) and Elliott and Timmermann (2008) construct a flexible setup 
with greater quantitative potential. In Online Appendix E.2, we demonstrate that regardless of the specifications for loss aversion, 
the FR-on-Surprise relation remains globally monotonic, whether it is linear or nonlinear. This is inconsistent with the observed 
non-monotonic FR-on-Surprise relation detailed in Section 2.4.

Dynamic models. Using the Survey of Professional Forecasters (SPF), Kohlhas and Walther (2021) show that forecasters’ expectations 
overreact to recent realizations of the output growth and therefore display a pattern of extrapolation. To explain this, they propose 
a model of “asymmetric attention,” where Bayesian agents pay more attention to the procyclical component and less attention 
to the countercyclical component. Afrouzi et al. (2022) design an experiment where participants who observe a large number of 
past realizations of a given AR(1) process make forecasts about future realizations. They show a pattern of overreaction, i.e., the 
perceived persistence of the AR(1) process is larger than the actual persistence. They propose a “top-of-mind” model, where agents 
rely excessively on or overreact to the recent realizations, relative to the rational benchmark.

In our empirical setting, both initial and updated forecasts are made within the same period, which encompass the earnings 
guidance for the current period. We use the variations of surprises contained in the earnings guidance across analysts to explore 
impacts of surprises’ characteristics on forecast revisions. Therefore, dynamic models are not informative about the cross-sectional 
heterogeneity of overreaction. Online Appendix E.3 provides evidence for illustrating this particular finding.

Agency issues. This empirical setting is new to the literature and informative about expectation formation. However, one may worry 
about the role of agency issues between analysts and the managerial teams who might have incentives to misrepresent information. In 
the literature, it is often shown that managers spin information in self-serving ways to cater to investors and analysts (e.g. Solomon, 
2012). Given managerial guidance is an important information protocol provided by managers, it is reasonable to conjecture that 
managers have an incentive to bias their guidance positively, which makes positive managerial guidance less reliable than negative 
managerial guidance. This skewed information reliability, if it exists, may lead to the asymmetry we documented. This conjecture is 
empirically testable. In Online Appendix E.4, we present evidence that is against the conjecture that positive guidance is less reliable. 
The managerial motives can be complex, often unobservable and unpredictable, which constitutes a source for guidance quality to 
be unreliable. In fact, that is the key motivation for our assumption that guidance quality is uncertain.

The literature also documents that managers could have incentives to manage earnings expectations downwards before the 
earnings release to make it beatable (e.g., Matsumoto, 2002; Cotter et al., 2006; Johnson et al., 2019). Given that one may imagine 
that more negatively surprised analysts could adjust their forecasts by more to ensure that the firms beat their earnings forecasts. 
To investigate this possibility, we rely on Johnson et al. (2019) who constructed the expectation management index (EMI) that 
captures the extent to which firms manage investors’ earnings expectations. We add EMI as an additional control in our main 
regressions (reported by Table 1) and in specifications presented by Fig. 2. If such a walk-down-to-beatable mechanism is crucial for 
our investigations, the estimated coefficients from our regressions should be greatly affected in terms of magnitude and significance. 
However, we find that all our estimations only change marginally at the best (available upon request), which suggests that our 
findings are unlikely driven only by managerial strategic guidance.

6. Conclusion

This paper documents a set of cross-sectional facts concerning expectation formation using firm-level earnings forecast and 
managerial guidance data: the overreaction to information is stronger for unfavorable surprises and weaker for larger surprises, and 
forecast revisions are asymmetric in surprises and nonmonotonic. We present a model of information uncertainty and smoothed 
ambiguity aversion to account for these facts. This model qualitatively differs from models with extreme ambiguity aversion or those 
with ambiguity neutral agents. Our work adds to the literature that studies expectation formation by documenting new facts and 
providing new theories.

The empirical setting has unique advantages and will be useful for exploiting other aspects of expectation formation. First, an-

alysts have dispersed information before receiving the guidance, summarized by their initial forecasts. The two features combined 
imply that the same managerial guidance delivers different surprises to analysts with different initial forecasts. The variations in 
surprises at the analyst level enable us to explore the cross-sectional features of overreaction. Second, in contrast to studies us-

ing the Survey of Professional Forecasters, this setting is static: we utilize within-quarter variations in surprises among analysts to 
uncover how analysts update their forecasts. Therefore, it is cleaner for exploring cross-sectional variations in expectation forma-

tion.
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Appendix A. Data

A.1. Sample construction

First, we retrieve all quarterly earnings guidance from the I/B/E/S Guidance Detail file issued for the current quarter by firm 
management from 1994 to 2017. The sample starts in 1994 as this is the first year when the I/B/E/S systematically collected 
information on managerial guidance.17 We only keep closed-ended managerial guidance, including point and range forecasts, to 
quantify and compare them with analysts’ forecasts. Consistent with the literature, the value of the guidance is set to equal the 
midpoint if it is a range forecast.

Second, given that our focus is on analysts’ belief-updating process upon receiving new information from firm management, we 
exclude all managerial guidance bundled with earnings announcements.18 We only consider unbundled guidance, partly because it 
is nearly impossible to distinguish whether a forecast revision reflects information gained from forward-looking managerial guidance 
or from the realized prior earnings when both of them occur simultaneously.

Third, for firm-quarters in which managers provide multiple rounds of earnings guidance (at different dates during the period 
from two days after the prior quarter earnings announcement date and the current quarter earnings announcement date), we only 
retain the latest guidance before the current quarter earnings announcement.19

Fourth, we then obtain individual analysts’ EPS forecasts for a firm-quarter from the I/B/E/S Estimates (the Unadjusted Detail 
History file) and match them with the I/B/E/S Guidance data using the same firm identifier (I/B/E/S ticker). Because earnings 
projections in the I/B/E/S Guidance Detail file are provided on a split-adjusted basis, we manually split-adjust both individual 
analysts’ forecasts and managerial projections so that they are comparable with the ultimate realized earnings announced for the 
forecasted quarter. The realized earnings data are also obtained from the I/B/E/S Estimates. Following a standard practice in the 
literature, we deflate the EPS estimates by the stock price at the beginning of the quarter using data retrieved from the CRSP. To 
avoid the small price deflator problem that may distort the distribution, we exclude observations with a stock price of less than one 
dollar.

Finally, in these data, the initial analyst forecasts are defined and constructed by individual analyst forecasts that are issued after 
the prior quarter earnings announcement date and are the most updated forecasts before the earnings guidance. The revised analyst 
forecasts are defined as those issued by the same set of analysts on or immediately after the earnings guidance date. For analysts who 
initially offer forecasts but provide no forecast revisions until the earnings announcement, we assume that their revised forecasts 
remain the same as their initial forecasts, a practice consistent with prior literature (Feng and McVay, 2010; Maslar et al., 2021).

Suppose that a typical fiscal quarter ends at 𝑄𝑡, and its realized earnings are usually announced at 𝐴𝑡 after the end of the quarter 
𝑄𝑡 (The Securities and Exchange Commission requires public firms to file their financial statements within 45 days after the end of 
the fiscal quarter). Similarly, the earnings announcement date 𝐴𝑡−1 for quarter 𝑡 − 1 would also happen after 𝑄𝑡−1. In this paper, 
we retrieve earnings guidance that is issued by firm management on any date between 𝐴𝑡−1 and 𝐴𝑡. Because an increasing number 
of firms bundle their earnings projections for quarter 𝑡 with the announcement of the realized earnings for quarter 𝑡 − 1, we further 
require the guidance to be unbundled (as justified earlier). That is, we only consider guidances issued between two dates, i.e., 𝐴𝑡−1
and 𝐴𝑡. Given earnings guidance 𝐺𝑡, we can accordingly identify the sequence of analysts’ earnings forecasts for the same quarter. 
We define analysts’ forecasts that are issued after 𝐴𝑡−1 but at the latest before 𝐺𝑡 as their initial forecast and the forecast that is 
issued on or after 𝐺𝑡 but before 𝐴𝑡 as their revised forecast. As noted above, for analysts who provide an initial forecast but do not 
revise, we assume that the revised forecast remains the same as the initial forecast. There are two exceptions to this general timing. 
First, it might be the case that 𝐺𝑡 lies between 𝑄𝑡 and 𝐴𝑡, in which case we term the guidance a preannouncement following the 
convention in the literature. Second, firm management can offer more than one earnings guidance, and therefore, 𝐺𝑡 may appear 
multiple times during the period. In this case, we only retain the latest guidance before 𝐴𝑡.

17 The coverage bias in the management forecast data documented by Chuk et al. (2013) is less of a concern in this particular setting. First, we obtain management 
forecast data from the I/B/E/S Guidance Detail file rather than the problematic First Call CIG database. Second, the focus of this paper is to understand how analysts 
update their beliefs given new information, i.e., management guidance in our setting. While the decision on the issuance of management guidance itself is also an 
important research question, it is not the focus of this paper. Third, the fact that we require at least one analyst issuing forecasts for a firm alleviates the concern that 
guidance data are more likely to be collected for firms with analyst coverage. Fourth, our results are robust to starting the sample period in 1998, after which the 
coverage bias has been shown to be relatively small.
18 Bundled guidance is defined as the managerial forecasts issued within 2 days around the actual earnings announcement date (Rogers and Van Buskirk, 2013).
19 However, our results are not sensitive to this specific choice and are qualitatively unchanged if we either keep the earliest guidance issued during a quarter or 
17

discard all firm-quarters with multiple guidance.
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A.2. Summary of statistics (Table A.1)

Table A.1

Summary of statistics.

(1) (2) (3) (4) (5) (6)

N mean sd p25 p50 p75

Initial forecasts 110,895 0.0120 0.0129 0.0070 0.0123 0.0180

Revised forecasts 110,895 0.0104 0.0149 0.0057 0.0113 0.0173

Forecast revision 110,895 -0.0016 0.0055 -0.0017 0.0000 0.0000

Forecast errors 110,895 -0.0000 0.0047 0.0000 0.0003 0.0011

Surprise 110,895 -0.0040 0.0171 -0.0062 -0.0012 0.0003

Managerial guidance 16,241 0.0067 0.0293 0.0027 0.0089 0.0160

Earnings 16,241 0.0089 0.0197 0.0044 0.0112 0.0177

Appendix B. Proofs and derivations

Proof of Lemma 1. The fact that forecast revisions are linear in guidance surprises directly follows from Equation (7). Further, 
forecast errors and forecast revisions are not correlated, because of rationality in noisy information expectation, that is, forecast 
errors are uncorrelated with any observables in the information set including forecast revisions. To demonstrate it mathematically, 
notice that

FENI
𝑖 =

𝜏𝜃
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

𝜃 −
𝜏𝑧

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦
𝜄𝑖 −

𝜏𝑌
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

𝜂;

FRNI
𝑖 =

𝜏𝑌
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑌

(
𝜏𝜃

𝜏𝜃 + 𝜏𝑧
𝜃 + 𝜂 −

𝜏𝑧
𝜏𝜃 + 𝜏𝑧

𝜄𝑖

)
.

The covariance between FE and FR is then given by

Cov
(
FENI
𝑖 ,FRNI

𝑖

)
∝

𝜏𝜃
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

𝜏𝜃
𝜏𝜃 + 𝜏𝑧

1
𝜏𝜃

−
𝜏𝑌

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑌
1
𝜏𝑌

+
𝜏𝑧

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

𝜏𝑧
𝜏𝜃 + 𝜏𝑧

1
𝜏𝑧

= 0,

which completes the proof. □

Derivation of Equation (12)-(14). Denote 𝛿 ≡ 𝜏𝑦
𝜏𝜃+𝜏𝑧+𝜏𝑦

. Then, it can be shown that

𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
) ≡𝑝̃(𝜏𝑦|𝑧0𝑖, 𝐹 ∗

0𝑖, 𝑠𝑖 + 𝐹
∗
0𝑖;𝐹𝑖

)
,

=𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑥𝑖, 𝑦) ,

∝exp
(
−𝜆

{
−𝐹 2

𝑖 +
(
2𝐹𝑖 + 𝛽

)(
𝐹 ∗
0𝑖 + 𝛿𝑠𝑖

)
−
[(
𝐹 ∗
0𝑖 + 𝛿𝑠𝑖

)2 + 1 − 𝛿
𝜏𝜃 + 𝜏𝑧

]})
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜙′
(
𝔼
𝜏𝑦
𝑖

[
𝑈
(
𝐹𝑖,𝜃

)])
× 𝑝

(
𝐹 ∗
0𝑖
)
𝑝
(
𝑠𝑖|𝜏𝑦)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=𝑝

(
𝑧0𝑖,𝑦|𝜏𝑦)

𝑝
(
𝜏𝑦
)
,

∝exp
(
−𝜆

[(
2𝐹𝑖 + 𝛽

)
𝛿𝑠𝑖 −

(
2𝐹 ∗

0𝑖𝛿𝑠𝑖 + 𝛿
2𝑠2𝑖 −

𝛿
𝜏𝜃 + 𝜏𝑧

)])
𝑝
(
𝑠𝑖|𝜏𝑦)𝑝(𝜏𝑦) ,

where the third line uses the fact that 𝐹 ∗
0𝑖 and 𝑠𝑖 are independent with only the distribution of 𝑠𝑖 affected by 𝜏𝑦; and the last line 

drops all terms that are not a function of 𝜏𝑦 . Then, the optimality condition (10) can be compactly written as

𝐹𝑖 = 𝐹 ∗
0𝑖 + 𝜅

(
𝐹 ∗
0𝑖, 𝑠𝑖, 𝐹𝑖

)
⋅ 𝑠𝑖,

where

𝜅
(
𝐹 ∗
0𝑖, 𝑠𝑖, 𝐹𝑖

)
= ∫

Γ𝑦

(
𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
)
d𝜏𝑦. □

Proof of Lemma 2. The log-likelihood ratio can be specifically written by:

log
(
𝐿
(
𝜏𝑦
))

=− 𝜆𝑠𝑖
[
2
(
𝐹 ′
𝑖 − 𝐹𝑖

)( 𝜏𝑦
)]

+ constant.
18

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦
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Given the fact that 𝜏𝑦∕ 
(
𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
increases in 𝜏𝑦 and that 𝐹 ′

𝑖 − 𝐹𝑖 > 0, 𝐿(𝜏𝑦) decreases in 𝜏𝑦, if and only if 𝑠𝑖 > 0; and 𝐿(𝜏𝑦)
increases in 𝜏𝑦, if and only if 𝑠𝑖 < 0. The lemma is shown. □

Proof of Proposition 1. The optimality condition (10) is equivalent to (12):

𝐹𝑖 = 𝐹 ∗
0𝑖 +

⎡⎢⎢⎢⎣∫Γ𝑦
(

𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)𝑑𝜏𝑦⎤⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜅

⋅𝑠𝑖. (B.1)

To obtain the second equality, we use the definition of 𝐹 ∗
0𝑖 and 𝑠𝑖 and the definition of 𝑝̃

(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖) specified in the main text.

We first demonstrate that the right-hand side of (B.1) is decreasing in 𝐹𝑖. Towards this end, we show

1
2
𝜕𝜅
𝜕𝐹𝑖
𝑠𝑖 =

⎧⎪⎨⎪⎩∫Γ𝑦
(

𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

) 𝜙′′ (𝔼𝜏𝑦𝑖 [
𝑈

(
𝐹𝑖, 𝜃

)])
𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]) 𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)d𝜏𝑦

− 𝜅
⎡⎢⎢⎢⎣∫Γ𝑦

𝜙′′
(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]) 𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)d𝜏𝑦⎤⎥⎥⎥⎦

⎫⎪⎬⎪⎭ 𝑠𝑖,
=∫
Γ𝑦

𝜙′′
(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
(
𝜕𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

)2

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)d𝜏𝑦 < 0.

The first equality is obtained by using the definition of 𝜅 and the expression of 𝜕𝑝̃∕𝜕𝐹𝑖. That is,

𝜕𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)
𝜕𝐹𝑖

=
𝜙′′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]) 𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)

− 𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖) ⎡⎢⎢⎢⎣∫Γ𝑦

𝜙′′
(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)])
𝜙′

(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]) 𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

𝑝̃
(
𝜏𝑦|𝑧0𝑖, 𝑦;𝐹𝑖)d𝜏𝑦⎤⎥⎥⎥⎦ .

To get the second equality, we use the expression of 𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
∕𝜕𝐹𝑖. That is,

𝜕𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹𝑖, 𝜃

)]
𝜕𝐹𝑖

=
(

𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦
− 𝜅

)
𝑠𝑖.

The third inequality holds given 𝜙′(⋅) > 0 and 𝜙′′(⋅) < 0.

We then notice that 𝜅 is bounded between 0 and 1. Therefore, the right-hand side of Equation (12) goes to ∞, when 𝐹𝑖 approaches 
−∞; and it goes to −∞ when 𝐹𝑖 approaches ∞. Both existence and uniqueness are implied.

Next we show that the optimal response 𝜅∗ only depends on 𝑠𝑖. Observe that

𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠𝑖;𝐹𝑖
)
= 𝑝̃

(
𝜏𝑦|𝑠𝑖;𝜅) ,

∝ exp
(
−𝜆

[
𝛽𝛿𝑠𝑖 + 2𝜅𝛿𝑠2𝑖 −

(
𝛿2𝑠2𝑖 −

𝛿
𝜏𝜃 + 𝜏𝑧

)])
𝑝
(
𝑠𝑖|𝜏𝑦)𝑝(𝜏𝑦) .

To derive the first equality, we use the Equation (12) to replace 𝐹𝑖, and therefore 𝐹 ∗
0𝑖 drops out. Therefore, 𝜅∗ is the fixed point of 

the following condition:

𝜅∗ = ∫
Γ𝑦

(
𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝑠𝑖;𝜅∗)d𝜏𝑦.

Therefore, it is the case that 𝜅∗ is only a function of 𝑠𝑖. □

Proof of Proposition 2. By using the definition 𝐹 ∗
𝑖 , the difference in the expected utilities is explicitly given by:

𝔼𝜏𝑦
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖

)
, 𝜃
)]

− 𝔼𝜏𝑦
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖

)
, 𝜃
)]

+
[( ∗ ( −) )2 ( ∗ ( +) )2] ( +)2
19

=2𝛽𝛿𝑠𝑖 + 𝜅 𝑠𝑖 − 𝛿 − 𝜅 𝑠𝑖 − 𝛿 𝑠𝑖 ,
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where 𝛿 ≡ 𝜏𝑦∕ (𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦). Let 𝑇 (𝛽) ≡ 𝜅∗ (𝑠−𝑖 )− 𝜅∗ (𝑠+𝑖 ).

Claim 1: If 𝛽 = 0, then 𝑇 (𝛽) = 0.

We guess and verify that it holds that 𝜅∗
(
𝑠−𝑖

)
= 𝜅∗

(
𝑠+𝑖

)
. If this is true, we establish that 𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹𝑖, 𝜃

)]
is symmetric in 𝑠𝑖: for any 

𝜏𝑦 and any pair of 
(
𝑠−𝑖 , 𝑠

+
𝑖

)
, we have:

𝔼𝜏𝑦
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖

)
, 𝜃
)]

= 𝔼𝜏𝑦
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖

)
, 𝜃
)]
.

In other words, for any 𝜏𝑦, we have:

𝜙′
(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖

)
, 𝜃
)])

= 𝜙′
(
𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖

)
, 𝜃
)])
.

By the definition of 𝜅, this implies:

𝜅∗
(
𝑠−𝑖

)
= 𝜅∗

(
𝑠+𝑖

)
,

which implies that 𝛽 = 0 is a solution to 𝑇 (𝛽) = 0. Further, according to Proposition 1, both 𝜅∗
(
𝑠−𝑖

)
and 𝜅∗

(
𝑠+𝑖

)
are unique.

Claim 2: If 𝛽 ≠ 0, 𝑇 (𝛽) ≠ 0.

Suppose towards a contradiction that there exists some 𝛽′ > 0, such that 𝑇
(
𝛽′
)
= 0. This implies that 𝜅∗

(
𝑠−𝑖

)
= 𝜅∗

(
𝑠+𝑖

)
= 𝜅′. For 

any pair of 
(
𝑠−𝑖 , 𝑠

+
𝑖

)
, we have:

𝜕 log

(
𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖,𝑠
−
𝑖 ;𝐹

∗
0𝑖+𝜅

′𝑠−𝑖

)
𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖,𝑠
+
𝑖 ;𝐹

∗
0𝑖+𝜅

′𝑠+𝑖

)
)

𝜕𝜏𝑦
=𝜆

(
𝜕𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖 ;𝜅

′) , 𝜃)]
𝜕𝜏𝑦

−
𝜕𝔼𝜏𝑦𝑖

[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖 ;𝜅

′) , 𝜃)]
𝜕𝜏𝑦

)
> 0.

The last inequality is obtained by using the fact that

𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖

)
, 𝜃
)]

− 𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖

)
, 𝜃
)]

= 2𝛽′𝛿
(
𝑠+𝑖 − 𝑠

−
𝑖

)
> 0.

In other words, 𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠
−
𝑖 ;𝐹

∗
0𝑖 + 𝜅

′𝑠−𝑖
)

first-order stochastically dominates 𝑝
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠
+
𝑖 ;𝐹

∗
0𝑖 + 𝜅

′𝑠+𝑖
)
. By the definition of 𝜅, this 

implies:

𝜅∗
(
𝑠−𝑖

)
> 𝜅∗

(
𝑠+𝑖

)
.

A contradiction. Similarly, suppose towards a contradiction that there exists some 𝛽′ < 0 such that 𝑇
(
𝛽′
)
= 0. It implies that 𝜅∗

(
𝑠+𝑖

)
>

𝜅∗
(
𝑠−𝑖

)
. A contradiction. The claim is shown.

Claim 3: If 𝛽 goes to ∞, 𝑇 (𝛽) > 0.

When 𝛽 goes to →∞, both 𝜅∗
(
𝑠−𝑖

)
and 𝜅∗

(
𝑠+𝑖

)
are bounded. Therefore,

𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
+
𝑖

)
, 𝜃
)]

− 𝔼𝜏𝑦𝑖
[
𝑈

(
𝐹 ∗ (𝐹 ∗

0𝑖, 𝑠
−
𝑖

)
, 𝜃
)]

→ 2𝛽𝛿
(
𝑠+𝑖 − 𝑠

−
𝑖

)
> 0.

𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠
−
𝑖 ;𝐹

∗
0𝑖 + 𝜅

′𝑠−𝑖
)

first-order stochastically dominates 𝑝̃
(
𝜏𝑦|𝐹 ∗

0𝑖, 𝑠
+
𝑖 ;𝐹

∗
0𝑖 + 𝜅

′𝑠+𝑖
)
, given 𝛽 →∞. Therefore, by the definition of 

𝜅, it implies that

𝜅∗
(
𝑠−𝑖

)
> 𝜅∗

(
𝑠+𝑖

)
.

That is, 𝑇 (𝛽) > 0. The claim is shown.

Claims 1 and 2 imply that 𝑇 (𝛽) crosses zero once and only at 𝛽 = 0. Combined with Claim 3, it further implies that 𝛽𝑇 (𝛽) ≥ 0, 
where the equality holds only when 𝛽 = 0. The proposition is shown. □

Proof of Proposition 3. If forecasters are ambiguity neutral, the optimal forecasts are such that

𝐹 ∗
𝑖 = 𝐹 ∗

0𝑖 +
⎡⎢⎢⎢⎣∫Γ𝑦 𝛿𝑝

(
𝜏𝑦|𝑠𝑖)d𝑠𝑖⎤⎥⎥⎥⎦ 𝑠𝑖,

where 𝛿 ≡ 𝜏𝑦∕(𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦) and the posterior belief 𝑝 
(
𝜏𝑦|𝑠𝑖) is given by

𝑝
(
𝜏𝑦|𝑠𝑖) ∝√

𝛿 exp
(
−1
2
(
𝜏𝜃 + 𝜏𝑧

)
𝑠2𝑖 𝛿

)
𝑝
(
𝜏𝑦
)
.

Taking the derivative of 𝐹 ∗
𝑖 w.r.t. 𝑠𝑖 leads to

𝜕𝐹 ∗
𝑖

𝜕𝑠𝑖
= ∫

Γ𝑦

𝛿𝑝
(
𝜏𝑦|𝑠𝑖)𝑑𝑠𝑖 − (

𝜏𝜃 + 𝜏𝑧
)

Var
(
𝛿|𝑠𝑖) 𝑠2𝑖 ,

( ) ( )

20

where Var 𝛿|𝑠𝑖 denotes the conditional volatility of 𝛿 under probability density 𝑝 𝜏𝑦|𝑠𝑖 .
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It is then straightforward to show that:

lim|𝑠𝑖|→0

𝜕𝐹 ∗
𝑖

𝜕𝑠𝑖
= lim|𝑠𝑖|→0∫

Γ𝑦

𝛿𝑝
(
𝜏𝑦|𝑠𝑖)d𝑠𝑖 > 0.

Furthermore, when |𝑠𝑖| → +∞, 𝑝 
(
𝜏𝑦|𝑠𝑖) converges to 𝑝∞

(
𝜏𝑦
)

and is given by:

𝑝∞
(
𝜏𝑦
)
∝
√
𝛿𝑝

(
𝜏𝑦
)
.

Then it must be the case that lim|𝑠𝑖|→+∞ Var
(
𝛿|𝑠𝑖) 𝑠2𝑖 → +∞. Further using the fact that ∫Γ𝑦 𝛿𝑝 

(
𝜏𝑦|𝑠𝑖)d𝑠𝑖 is bounded above by 𝛿max, 

it is straightforward to demonstrate that

lim|𝑠𝑖|→+∞

𝜕𝐹 ∗
𝑖

𝜕𝑠𝑖
→ −∞.

Finally, the symmetry of 𝐹 ∗
𝑖 −𝐹

∗
𝑖0 around the origin directly follows from the fact that ∫Γ𝑦 𝛿𝑝 

(
𝜏𝑦|𝑠𝑖)d𝑠𝑖 is symmetric, since 𝑝 

(
𝜏𝑦|𝑠𝑖) =

𝑝 
(
𝜏𝑦|− 𝑠𝑖) for ∀𝑠𝑖 ∈ℝ. □

Proof of Proposition 4. The objective function (4) under the Maxmin criterion becomes:

max
𝐹∈ℝ

min
𝜏𝑦∈Γ𝑦

𝔼
[
−(𝐹 − 𝜃)2 + 𝛽𝜃|𝑧𝑖, 𝑦; 𝜏𝑦] ,

where Γ𝑦 is the full support for 𝜏𝑦. Let the upper bound be 𝜏max
𝑦 and the lower bound be 𝜏min

𝑦 . For ease of notation, denote the 
subjective relative precision of guidance to be

𝛿 ≡ 𝜏𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏𝑦
,

and accordingly, it is bounded by

𝛿min ≡
𝜏min
𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏min
𝑦

and 𝛿max ≡
𝜏max
𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏max
𝑦

.

To prove the proposition, we first characterize the optimal forecasting rule under the Maxmin criterion. Then, we proceed to 
prove that 𝐹 ∗

𝑖 − 𝐹 ∗
0𝑖 is non-decreasing in 𝑠𝑖.

First of all, it can be shown that

𝜃̄𝜏𝑦 = 𝐹
∗
0𝑖 + 𝛿𝑠𝑖, 𝔼𝑖

[
𝜃2|𝑧𝑖, 𝑦; 𝜏𝑦] =(

𝐹 ∗
0𝑖 + 𝛿𝑠𝑖

)2 + (1 − 𝛿)
(

1
𝜏𝜃 + 𝜏𝑧

)
.

Then, the problem can be transformed into

max
𝜅∈ℝ

min
𝛿∈Δ
𝑉 (𝜅, 𝛿) ,

where Δ ≡ [
𝛿min, 𝛿max

]
and the value function 𝑉 (𝜅, 𝛿) is given by

𝑉 (𝜅, 𝛿) ≡−
(
𝐹 ∗
0𝑖 + 𝜅𝑠𝑖

)2 + [
2
(
𝐹 ∗
0𝑖 + 𝜅𝑠𝑖

)
+ 𝛽

] (
𝐹 ∗
0𝑖 + 𝛿𝑠𝑖

)
−
[(
𝐹 ∗
0𝑖 + 𝛿𝑠𝑖

)2 + (1 − 𝛿) 1
𝜏𝜃 + 𝜏𝑧

]
,

where we have used the fact that 𝐹 = 𝐹 ∗
0𝑖 + 𝜅𝑠𝑖. Notice that 𝑉 (𝜅, 𝛿) is quadratic in 𝜅 and 𝛿. Also note that 𝑉 (𝜅, 𝛿) is concave in 𝛿. 

Therefore, we have that for any 𝜅 ∈ℝ:

argmin
𝛿∈Δ

𝑉 (𝜅, 𝛿) ∈
{
𝛿min, 𝛿max

}
.

Notice that

𝑉
(
𝜅, 𝛿max

)
− 𝑉

(
𝜅, 𝛿min

)
=
(
2𝜅𝑠𝑖 + 𝛽

)
𝑠𝑖
(
𝛿max − 𝛿min

)
+ 1
𝜏𝜃 + 𝜏𝑧

(
𝛿max − 𝛿min

)
− 𝑠2𝑖

(
𝛿2max − 𝛿

2
min

)
.

It can then be shown that

𝑉
(
𝜅, 𝛿max

)
− 𝑉

(
𝜅, 𝛿min

)
> 0⇔ 𝜅 > 𝑇

(
𝑠𝑖
) ≡ (

𝛿max + 𝛿min
)

2
−
𝛽𝑠𝑖 +

1
𝜏𝜃+𝜏𝑧

2𝑠2𝑖
.

21

In what follows, we characterize the optimal forecasting rule for three exclusive cases:
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Fig. B.1. The value function under the worst case scenario: min𝜏𝑦∈Γ𝑦 𝑉 (𝜅, 𝛿).

• If 𝛿min > 𝑇
(
𝑠𝑖
)
, it can be shown that

– when 𝜅 ∈
(
−∞, 𝑇

(
𝑠𝑖
)]

, min𝛿∈Δ 𝑉 (𝜅, 𝛿) = 𝑉
(
𝜅, 𝛿max

)
. Hence, min𝛿∈Δ 𝑉 (𝜅, 𝛿) is increasing in 𝜅.

– when 𝜅 > 𝑇
(
𝑠𝑖
)
, min𝛿∈Δ 𝑉 (𝜅, 𝛿) = 𝑉

(
𝜅, 𝛿min

)
. Hence, min𝛿∈Δ 𝑉 (𝜅, 𝛿) is first increasing in 𝜅 and then decreasing in 𝜅. It 

achieves its maximum at 𝜅 = 𝛿min.

Fig. B.1(a) graphically illustrates the value function under the worst case scenario when 𝛿max < 𝑇
(
𝑠𝑖
)
. Therefore, it must be the 

case that the optimal 𝜅∗ = 𝛿min when 𝛿min > 𝑇
(
𝑠𝑖
)
.

• If 𝛿max < 𝑇
(
𝑠𝑖
)
, it can be shown that

– when 𝜅 ∈
(
−∞, 𝑇

(
𝑠𝑖
)]

, min𝛿∈Δ 𝑉 (𝜅, 𝛿) = 𝑉
(
𝜅, 𝛿max

)
. Hence, min𝛿∈Δ 𝑉 (𝜅, 𝛿) is first increasing in 𝜅 and then decreasing in 𝜅. 

It achieves its maximum at 𝜅 = 𝛿max.

– when 𝜅 ∈
[
𝑇
(
𝑠𝑖
)
,+∞

)
, min𝛿∈Δ 𝑉 (𝜅, 𝛿) = 𝑉

(
𝜅, 𝛿min

)
. Hence, min𝛿∈Δ 𝑉 (𝜅, 𝛿) is decreasing in 𝜅.

Fig. B.1(b) graphically illustrates the value function under the worst case scenario when 𝛿max < 𝑇
(
𝑠𝑖
)
. Therefore, it must be the 

case that the optimal 𝜅∗ = 𝛿max when 𝛿max < 𝑇
(
𝑠𝑖
)
.

• If 𝛿min < 𝑇
(
𝑠𝑖
)
< 𝛿max, it is then straightforward to show the following:

– when 𝜅 ∈
(
−∞, 𝑇

(
𝑠𝑖
)]

, min𝛿∈Δ 𝑉 (𝐹 , 𝛿) = 𝑉
(
𝐹 , 𝛿max

)
. Hence, min𝛿∈Δ 𝑉 (𝐹 , 𝛿) is increasing in 𝜅.

– when 𝜅 ∈
[
𝑇
(
𝑠𝑖
)
,+∞

)
, min𝛿∈Δ 𝑉 (𝐹 , 𝛿) = 𝑉

(
𝐹 , 𝛿min

)
. Hence, min𝛿∈Δ 𝑉 (𝐹 , 𝛿) is decreasing in 𝜅.

Fig. B.1(c) graphically illustrates the value function under the worst case scenario when 𝛿min < 𝑇
(
𝑠𝑖
)
< 𝛿max. Therefore, it must 

be the case that the optimal 𝜅∗ = 𝑇
(
𝑠𝑖
)

when 𝛿min < 𝑇
(
𝑠𝑖
)
< 𝛿max.

To summarize, we have the following optimal forecasting rule under the Maxmin criterion:

𝜅∗ =
⎧⎪⎨⎪⎩
𝛿min if 𝛿min > 𝑇

(
𝑠𝑖
)
;

𝛿max if 𝛿max < 𝑇
(
𝑠𝑖
)
;

𝑇
(
𝑠𝑖
)

otherwise.

Or equivalently,

𝐹 ∗ −𝑋𝑖 =
⎧⎪⎨⎪⎩
𝛿min𝑠𝑖 if 𝛿min > 𝑇

(
𝑠𝑖
)
;

𝛿max𝑠𝑖 if 𝛿max < 𝑇
(
𝑠𝑖
)
;

𝑇
(
𝑠𝑖
)
𝑠𝑖 otherwise.

Note that 𝑇
(
𝑠𝑖
)
𝑠𝑖 is always increasing in 𝑠𝑖. Therefore, given the continuity of 𝐹 ∗

𝑖 − 𝐹 ∗
0𝑖 with respect to 𝑠𝑖, it must be the case that 

𝐹 ∗
𝑖 − 𝐹 ∗

0𝑖 is non-decreasing in 𝑠𝑖. □

Derivation of Equation (15). Following the definition of 𝑏̂1
(
𝑠𝑚, 𝜖

)
, we have

𝑏̂1
(
𝑠𝑚, 𝜖

) ≡Cov
(
FE𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) ,

=
Cov

(
𝜃 − 𝐹0𝑖 − FR𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) ,

Cov
(
𝜃,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Cov

(
𝐹0𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))

22

=− 1 +
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) −
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) ,
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=− 1 +
Cov

(
𝜃,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) ,
where in the last equality we use the fact that Cov

(
𝐹0𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
= 0.

To see why this is the case, notice that the unconditional covariance between initial forecasts 𝐹0𝑖 and guidance surprise 𝑠𝑖 is zero: 
Cov

(
𝐹0𝑖, 𝑠𝑖

)
= 0. Further using the fact that both 𝐹0𝑖 and 𝑠𝑖 are normally distributed, we know that initial forecasts 𝐹0𝑖 and guidance 

surprise 𝑠𝑖 are independent. Moreover, since forecast revisions FR𝑖 is a (non-linear) function of guidance surprise 𝑠𝑖 only, it is then 
straightforward to show that Cov

(
𝐹0𝑖,FR𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
= 0.

For any 𝑠𝑖 ∈ 𝕀 
(
𝑠𝑚, 𝜖

)
, a first-order approximation of FR𝑖 around the 𝑠𝑖 = 𝑠𝑚 implies

FR𝑖 ≈ 𝜅
(
𝑠𝑚

)
𝑠𝑚 +

[
𝜅
(
𝑠𝑚

)
+ 𝜅′

(
𝑠𝑚

)
𝑠𝑚

] (
𝑠𝑖 − 𝑠𝑚

)
,

= −𝜅′
(
𝑠𝑚

)
𝑠2𝑚 +

[
𝜅
(
𝑠𝑚

)
+ 𝜅′

(
𝑠𝑚

)
𝑠𝑚

]
𝑠𝑖.

Substituting it in the expression of 𝑏̂1
(
𝑠𝑚

)
, we obtain:

𝑏̂1
(
𝑠𝑚

) ≡ lim
𝜖→0
𝑏̂1

(
𝑠𝑚, 𝜖

)
,

≈ −1 + lim
𝜖→0

(
Cov

(
𝜃, 𝑠𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
𝑠𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) ∕
[
𝜅
(
𝑠𝑚

)
+ 𝜅′

(
𝑠𝑚

)
𝑠𝑚

])
,

= −1 + 𝜅RE

𝜅
(
𝑠𝑚

)
+ 𝜅′

(
𝑠𝑚

)
𝑠𝑚
,

where we use Equation (B.2) to obtain at the last equality.

In the following, we provide an analysis in the special of noisy rational expectations. Under rationality, it can be shown that

Cov
(
FENI
𝑖 ,FRNI

𝑖

)
= 0.

Given FENI
𝑖 and FRNI

𝑖 are normally distributed, it can be shown that FENI
𝑖 and FRNI

𝑖 are independent, which implies that 
Cov

(
FENI
𝑖 ,FRNI

𝑖 |𝑠𝑖 ∈ 𝕀
(
𝑠𝑚, 𝜖

))
= 0. Therefore, we have the following:

𝑏̂RE
1

(
𝑠𝑚, 𝜖

)
=− 1 + 1

𝜅RE

Cov
(
𝜃, 𝑠𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

))
Var

(
𝑠𝑖|𝑠𝑖 ∈ 𝕀

(
𝑠𝑚, 𝜖

)) = 0, (B.2)

where we use the fact that FRNI
𝑖 = 𝜅RE𝑠𝑖 with 𝜅RE given by Equation (6). □

Proof of Proposition 5. To prove part (i) of the proposition, based on the approximation of Equation (15), it is sufficient to prove 
that

lim
𝑠𝑖→0

d𝜅
(
𝑠𝑖
)
+ 𝜅′

(
𝑠𝑖
)
𝑠𝑖

d𝑠𝑖
= 2 lim

𝑠𝑖→0
𝜅′

(
𝑠𝑖
)
< 0.

Notice that 𝜅
(
𝑠𝑖
)
= ∫Γ𝑦

(
𝜏𝑦

𝜏𝜃+𝜏𝑧+𝜏𝑦

)
𝑝̃
(
𝜏𝑦|𝑠𝑖;𝜅 (𝑠𝑖))d𝜏𝑦 where the distorted posterior 𝑝̃

(
𝜏𝑦|𝑠𝑖;𝜅 (𝑠𝑖)) is such that

𝑝̃
(
𝜏𝑦|𝑠𝑖;𝜅) ∝ exp

(
−𝜆

[
𝛽𝛿𝑠𝑖 + 2𝜅𝛿𝑠2𝑖 −

(
𝛿2𝑠2𝑖 −

𝛿
𝜏𝜃 + 𝜏𝑧

)])
𝑝
(
𝑠𝑖|𝜏𝑦)𝑝(𝜏𝑦) .

Some algebra implies that

d𝜅
(
𝑠𝑖
)

d𝑠𝑖
=∫
Γ𝑦

𝛿
d𝑝̃

(
𝜏𝑦|𝑠𝑖;𝜅)
d𝑠𝑖

d𝜏𝑦,

=− 𝜆
(
𝛽 + 4𝜅

(
𝑠𝑖
)
𝑠𝑖 +

(
𝜏𝜃 + 𝜏𝑧

)
𝑠𝑖
)

Ṽar𝑖 (𝛿) + 2𝜆𝑠𝑖C̃ov𝑖
(
𝛿, 𝛿2

)
− 2𝜆𝑠2𝑖 Ṽar𝑖 (𝛿)

d𝜅
(
𝑠𝑖
)

d𝑠𝑖
,

where Ṽar𝑖 (⋅) and C̃ov𝑖 (⋅) denote the variance and covariance under the distorted posterior 𝑝̃
(
𝜏𝑦|𝑠𝑖;𝜅). It is then straight-forward to 

see that

lim
𝑠→0

d𝜅
(
𝑠𝑖
)

d𝑠𝑖
= lim
𝑠→0

−𝜆𝛽Ṽar𝑖 (𝛿) < 0,

which completes the proof of part (i).
To prove part (ii) of the proposition, notice that when |𝑠𝑖| goes to infinity, the distorted belief 𝑝̃

(
𝜏𝑦|𝑠𝑖;𝜅) is degenerate that puts 
23

probability 1 on the lowest possible precision for manager guidance:
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lim|𝑠𝑖|→∞
𝜅
(
𝑠𝑖
)
= 𝛿min ≡

𝜏min
𝑦

𝜏𝜃 + 𝜏𝑧 + 𝜏min
𝑦

.

Hence we have that lim|𝑠𝑖|→∞ 𝜅
′ (𝑠𝑖) = 0. It is then can be shown that

lim|𝑠𝑖|→∞
𝑏̂1

(
𝑠𝑖
)
= −1 + 1∕𝛿min.

Further using the fact that 𝑏̂1 (0) = 𝜅 (0) > 𝛿min, it is straight-forward to prove that

𝑏̂1 (0) < lim|𝑠𝑖|→∞
𝑏̂1

(
𝑠𝑖
)
. □

Proof of Proposition 6. It is straight-forward to show that the fundamental 𝜃 and the initial forecasts 𝐹 ∗
0𝑖 are both unconditionally 

mean zero:

𝔼 [𝜃] = 0, 𝔼
[
𝐹 ∗
0𝑖
]
= 0.

Furthermore, observe that

𝔼
[
FR𝑖

]
=

+∞

∫
−∞

𝜅
(
𝑠𝑖
)
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖,

=

0

∫
−∞

𝜅
(
𝑠𝑖
)
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖 +

+∞

∫
0

𝜅
(
𝑠𝑖
)
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖,

=−

+∞

∫
0

𝜅
(
−𝑠𝑖

)
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖 +

+∞

∫
0

𝜅
(
𝑠𝑖
)
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖,

=

+∞

∫
0

[
𝜅
(
𝑠𝑖
)
− 𝜅

(
−𝑠𝑖

)]
𝑠𝑖𝑝

(
𝑠𝑖
)
d𝑠𝑖 < 0,

where 𝑝 
(
𝑠𝑖
)

denotes the probability density of guidance surprises in the objective environment. To arrive at the third equality, we 
use the fact that 𝑝 

(
𝑠𝑖
)

is symmetric and the last inequality follows Proposition 2 such that 𝜅
(
𝑠𝑖
)
< 𝜅

(
−𝑠𝑖

)
.

Finally, using the fact that FE𝑖 = 𝜃 − 𝐹 ∗
0𝑖 − FR𝑖, it is straight-forward to prove that 𝔼 

[
FE𝑖

]
> 0. □

Appendix. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jet .2024 .105839.
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